
TOWARDS FORMALIZING PARAMETRICITY FOR
NESTED TYPES IN AGDA

A Thesis
by

DANIEL JEFFRIES

Submitted to the School of Graduate Studies
 at Appalachian State University

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

August 2021
Department of Computer Science

TOWARDS FORMALIZING PARAMETRICITY FOR
NESTED TYPES IN AGDA

A Thesis
by

DANIEL JEFFRIES
AUGUST 2021

APPROVED BY:

Patricia Johann, Ph.D.
Chairperson, Thesis Committee

Raghuveer Mohan, Ph.D.
Member, Thesis Committee

Andrew Polonsky, Ph.D.
Member, Thesis Committee

Rahman Tashakkori, Ph.D.
Chairperson, Department of Computer Science

Mike McKenzie, Ph.D.
Dean, Cratis D. Williams School of Graduate Studies

Copyright by Daniel Jeffries 2021
All Rights Reserved

Abstract

TOWARDS FORMALIZING PARAMETRICITY FOR
NESTED TYPES IN AGDA

Daniel Jeffries
B.S., Appalachian State University

Chairperson: Dr. Patricia Johann

Recent work by Johann, Ghiorzi, and Jeffries presents a Hindley-Milner-style

calculus whose type system includes a primitive type formation rule for constructing

nested types directly as fixpoints. The term calculus for this type system supports

primitive pattern matching, functorial map functions, and fold combinators for nested

types. A parametric model of the calculus is given in terms of category theory, using

fixpoints of higher-order functors to interpret nested types. In this thesis, we

formalize the syntax of the calculus and partially formalize its model in the proof

assistant and functional programming language Agda. To prove a proposition in

Agda, the user first gives a formal definition of the proposition as a type T. Then the

user defines a function of type T, and Agda's type-checker checks whether the user-

defined function has the correct type. Since the model is defined in terms of category

theory, we use the agda-categories library to formalize the categorical constructs used

in the model. We introduce the syntax and semantics of the calculus as they are being

formalized.

iv

Acknowledgments

I would like to thank several individuals for their support. First, I would like to thank

my committee chairperson, Dr. Patricia Johann. Your guidance has been invaluable

throughout my M.S. studies, and my research and writing skills have benefited greatly from

your expertise. I am also grateful for the fact that you have exposed me to many new

concepts in computer science and that you have provided a stimulating environment in which

to study these concepts. I would also like to thank Dr. Enrico Ghiorzi for the knowledge he

has imparted to me throughout our time working together, and I am grateful to both him and

Dr. Johann for providing a welcoming environment when I was just starting to work on

projects with them. I would also like to thank my committee members, Dr. Andrew Polonsky

and Dr. Raghuveer Mohan, for their support and feedback. I am also grateful to Dr. Polonsky

for introducing me to Agda and proof assistants. I thank Dr. Mohan for providing me with

the opportunity to work on my first major undergraduate project, for helping me to develop

my problem solving skills through competitive programming, and for always being available

for stimulating conversations about algorithms. I thank the entire committee for their

patience and for taking the time to read and evaluate this thesis. The work reported in this

thesis was supported by NSF awards 1713389 and 1906388

v

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Proof Assistants . 1

1.1.1 What is a proof assistant? . 1

1.1.2 Why use a proof assistant? . 2

1.2 Agda and Dependent Types . 3

1.2.1 Dependent Types . 6

1.3 Propositions As Types . 8

1.4 Nested Types and The Calculus N . 10

2 Syntax of Types 12

2.1 Type Variables . 12

2.2 Type Expressions . 14

2.3 Type Contexts . 17

2.4 Type Formation Rules . 19

2.5 Weakening . 25

2.6 Substitution . 28

2.6.1 Second-order substitution . 31

3 Category Theory 35

3.1 Category Theory Crash Course . 35

vi

3.1.1 Formal Definition . 36

3.1.2 Examples of Categories . 36

3.1.3 Functors . 37

3.1.4 Examples of Functors . 38

3.1.5 Natural Transformations . 39

3.2 Category Theory in Agda . 42

3.2.1 Categories . 42

3.2.2 Examples of Categories in Agda . 46

3.2.3 Functors . 49

3.2.4 Natural Transformations . 50

4 Set Semantics of Types 52

4.1 Set Environments . 53

4.2 Set Environments in Agda . 54

4.3 Interpreting Types as Sets . 60

4.4 Interpreting Types as Sets in Agda . 63

4.4.1 Fixpoints of Functors in Agda . 73

5 Syntax of Terms 82

5.1 Term Variables and Term Contexts . 82

5.1.1 Term Contexts in Agda . 83

5.2 Well-formed Terms . 85

5.3 Well-formed Terms in Agda . 86

6 Set Semantics of Terms 94

6.1 Set Semantics of Terms in Agda . 98

6.1.1 Interpreting the Remaining Terms . 104

7 Relation Semantics of Types 107

7.1 Relations and Relation Transformers . 107

7.1.1 Relation Transformers . 108

7.2 Relations and Relation Transformers in Agda . 110

7.2.1 Relation Transformers in Agda . 113

vii

7.2.2 Functors of Relation Transformers . 124

7.3 Relation Environments . 127

7.3.1 Relation Environments in Agda . 127

7.4 Interpreting Types as Relations . 128

7.4.1 Interpreting Types as Relations in Agda . 131

7.4.2 Fixpoints of Relation Transformers in Agda . 138

8 Parametricity 145

8.1 Parametricity for the Calculus N . 146

8.2 Parametricity for the Calculus N in Agda . 147

9 Conclusion 155

9.1 Future Work . 156

Bibliography 158

Vita 159

viii

Chapter 1

Introduction

Previous work [5] has yielded a calculus N of nested types and a parametric model for the calculus.

In this thesis we present a formal implementation [4] of that calculus and model in the proof assistant

Agda. The focus of this thesis is the implementation itself, but the syntax and the semantics of the

calculus will be presented as it is being formalized.

Formalizing the calculus and model in Agda serves several purposes. The calculus and model are both

nontrivial, so our formalization efforts should provide insights on common issues faced when formalizing

languages in a proof assistant. It also serves a practical purpose because a complete formalization of

the calculus and parametricity results will increase confidence in the correctness of our constructions

and can potentially serve as a proof artifact alongside the original paper.

1.1 Proof Assistants

1.1.1 What is a proof assistant?

A proof assistant, or interactive theorem prover, is software that assists users in constructing and

verifying the correctness of proofs in a particular logical system. The role of a proof assistant is

to mechanize the aspects of proof development that are completely algorithmic, such as unwinding

definitions and verifying that the inference rules of the logic are applied correctly. The act of constructing

a proof is primarily left up to the user, although proof assistants can provide helpful hints and feedback.

This justifies the term interactive theorem prover. This interaction with the user is in constrast with

1

automated theorem proving, in which inference rules are applied algorithmically in search of a proof with

no user interaction. In other words, an automated theorem prover mechanizes the construction of the

proof while a proof assistant mechanizes the verification. Some proof assistants incorporate techniques

from automated theorem proving, but automated theorem proving is beyond the scope of this thesis

and receives no further mention.

Proof assistants can be used for many different applications, including verifying the correctness of

a compiler, proving that an implementation of a data structure satisfies an abstract specification, and

formalizing mathematics. Many proof assistants can also be viewed as programming languages in their

own right and include libraries for standard constructions like any other programming language.

To prove something in a proof assistant, the user first specifies it as a proposition. As the user

fills in the proof piece by piece, the proof assistant can automatically verify whether each step is valid

according to the rules of the logic. Many proof assistants allow the user to place holes in a proof that

act as placeholders to be filled in later. These holes allow the user to write a partial proof that can still

be checked. If the partial proof is verified, then it might be possible to complete the proof. But if the

partial proof is marked as invalid, then the user needs to back up and try a different approach. A proof

assistant can also track and display the context — i.e., what has been proven so far — and the goal

proposition — i.e., what remains to be proven — for each hole. These features allow the user to focus

on the content of the proof rather than manually performing the careful bookkeeping required in proof

development.

Although the construction of proofs is not automated like verification is, a proof assistant can often

fill in some of the details. For example, if several cases are required for the next step of a proof, the

proof assistant can fill in a template with a hole for each case.

1.1.2 Why use a proof assistant?

A reader might ask at this point what benefit there is to be gained from formalizing a proof in a proof

assistant. As mentioned above, the most important benefit of formalizing a proof is increased confidence

in its correctness, particularly the technical details. Having a machine-checked formalization of a proof

increases the programmer’s (and others’) confidence that the proof is correct. In fact, it is becoming

increasingly common for papers in programming languages (PL) research to be accompanied by a proof

artifact, or an implementation of the main results in a proof assistant. A proof artifact also allows

others to interact directly with the content of the paper in a familiar environment.

2

During the proof development phase, the user stands to benefit from existing libraries and reuse of

proofs that have already been implemented in the proof assistant. Sometimes in a proof, the author

cites “well-known” results without trotting out the details or even giving a proper citation. If the

well-known result is also formalized in the proof assistant, then the user can simply import the required

theorem and reuse it in their proof. This is also helpful for anyone reading the proof that might not be

as familiar with the known results.

This leads to another benefit, which is that every part of the proof must be made explicit when

formalized. This makes the formalized proofs self-contained and more approachable to those with less

experience. Of course, some may view this as a detriment because it means even trivial proofs must

be included when they might be elided on paper. However, if the elided proof really is trivial, then the

proof assistant should be able to do most of the work automatically.

The greatest benefit of formalization during proof development is the bookkeeping the proof assistant

provides for keeping track of the details of the proof. Rather than manually unwinding a complex

definition to determine what must be proven next, the user can rely on the proof assistant to compute

the next proof goal.

Once all the definitions and theorems of a system have been implemented in a proof assistant, the

formalization can be helpful for generating examples. In a system with lots of details and complex

syntax, this can be much more efficient than constructing nontrivial examples by hand.

While there are many reasons we might decide to formalize a proof, it should be said that a proof

assistant is not a magic bullet. Even formalized proofs may contain mistakes, and although there have

been efforts to prove the correctness of proof assistant implementations themselves, there can always

be bugs in these implementations.

1.2 Agda and Dependent Types

Agda [8] is a functional programming language based on the theory of dependent types. Agda shares

much of its syntax with, and is implemented in, Haskell. Like most functional languages, Agda allows

the user to define their own types and write functions over these types.

Unlike Haskell, Agda programs can contain unicode characters. Since Agda is often used to for-

malize mathematics and logic, this feature allows us to use the standard notation for most logical and

mathematical symbols.

3

To explore the basic syntax of Agda, let us first consider the polymorphic identity function:

id : ∀ {A : Set} → A → A

id x = x

The type of id says that for any type A, id takes an element of A as input and returns an element of A.

The curly braces around A indicate it is an implicit argument. In most cases, implicit arguments

do not need to be provided by the programmer when calling a function, but they can be included by

placing curly braces around the argument. For example, if we have defined a type MyType, then we

can define the identity function on this type as a special case of the polymorphic identity function. The

following definition type-checks with or without the “{MyType}”

idMyType : MyType → MyType

idMyType = id {MyType}

since the type-checker can determine the correct value for A based on the type signature of idMyType.

In Agda, types themselves are elements of universe types, with the base universe denoted by Set.

All “base” types fit into Set, e.g., the type of booleans, the type of natural numbers, list types, function

types (where domain and codomain are themselves “base” types), etc. Universe types fit into other

universe types, and there is an entire hierarchy of universes with Set belonging to Set1, Set1 belonging

to Set2, and so on.

The data keyword is used to define new types. Data types are defined inductively by their data

constructors (sometimes referred to simply as constructors). The simplest data types in Agda are the

unit type and the empty type.

data > : Set where

tt : >

data ⊥ : Set where

The unit type represents a singleton set and has a single constructor tt representing its sole element.

The unit type is called > (“top”) in Agda. The empty type represents the empty set. The empty type

has no constructors and is called ⊥ (“bottom”) in Agda. The presence of Set between the colon and the

keyword where indicates that the data type being defined has type Set, i.e., fits inside the base universe.

Another data type is Bool, which has two constructors, true and false:

4

data Bool : Set where

true : Bool

false : Bool

Functions over data types are defined by pattern matching. When writing a function that takes a

data type as input, pattern matching allows us to perform case analysis and do different computations

for each data constructor. For example, to write a function from Bool to some other type, we can give

a case for true and a case for false:

negate : Bool → Bool

negate true = false

negate false = true

We can also pattern match on multiple arguments, or choose not to match on an argument. If the

value of the un-matched argument is needed, we can use a variable. Otherwise we can use an underscore

to indicate the value is not used:

and : Bool → Bool → Bool

and true b = b

and false = false

Types with no elements, such as the empty type ⊥, are treated as special cases during pattern

matching. Agda recognizes that if a type has no possible constructors, then there are no cases to

consider when pattern matching on this type. Therefore, any function that takes an argument of type

⊥ can be defined trivially. This behavior is represented using the absurd pattern in Agda, denoted by

(). For example, we can define a function exFalso from the empty type to any other type:

exFalso : ∀ {A : Set} → ⊥ → A

exFalso ()

We can also define inductive data types in Agda by including constructors that build up new elements

from smaller ones. A canonical example is the type of natural numbers:

data N : Set where

zero : N

suc : N → N

5

A natural number is either zero or a successor of another natural number. Functions over inductive

data types can be defined using recursion:

+n : N → N → N

n +n zero = n

n +n suc m = suc (n +n m)

The underscores in the name of the addition operator indicate it is an infix operator and the arguments

go where the underscores are. Another common inductive data type is the List data type:

data List (A : Set) : Set where

nil : List A

cons : A → List A → List A

Unlike the other types we have defined so far, List is parameterized by a type A. This means each choice

of A gives rise to a type List A whose elements are finite lists of elements of A. For example, List N is

the type of lists of natural numbers, with elements nil, (cons 2 nil), etc.

1.2.1 Dependent Types

Earlier we observed that Agda is based on the theory of dependent types. So far, we have only seen

types that are constructed from other types, e.g., List N. Agda’s dependent type system allow us to

define types that depend on terms, i.e., elements of some other type. The canonical example of a

dependent type is the Vec data type:

data Vec (A : Set) : N → Set where

[] : Vec A zero

:: : ∀ {n : N} → A → Vec A n → Vec A (suc n)

The type Vec is parameterized by a type A and indexed by natural numbers. This means for each

type A, Vec A is a function that takes a natural number n and produces the type Vec A n. The type

parameter A gives the type of the elements and the natural number index gives the length of the vector.

An important distinction between type parameters and type indices is that fixing the indices and

choosing different parameters generally produces types of the same “shape,” while choosing different

indices can produce types of very different “shape.” For example, the elements of Vec N n and Vec Bool n

6

have the same index n and are essentially the same. These types both contain vectors of length n, and

the only difference is in what kind of value fills each position in the vectors. On the other hand, the only

element of type Vec A zero is the empty vector [], while the type Vec A (suc n) contains only nonempty

vectors of the form (x :: xs). There is no way to express these constraints with the parameterized data

type List since the type of a list provides no information about its structure.

Another canonical and very useful dependent data type is the type of propositional equality:

data ≡ : ∀ {A : Set} → A → A → Set where

refl : ∀ {A : Set} {a : A} → a ≡ a
(1)

This type is called propositional equality to contrast it with definitional equality, which considers two

terms equal because the computations that define them evaluate to the exact same result. For example,

n +n zero is definitionally equal to n. The propositional equality type takes no parameters and is

indexed by a type (implicitly) and two elements of this type. The type of the refl constructor (for

“reflexive”) can be read as “for any type A and an element a of A, a is equal to itself. This type may

not seem particularly interesting, but it is very useful when used with pattern matching.

For instance, we can show that applying a function preserves equality. Let us write the signature

with a hole on the right hand side.

cong : ∀ {A B : Set} {a1 a2 : A} → (f : A → B) → a1 ≡ a2 → f a1 ≡ f a2

cong f p = {!!} -- Goal: f a1 ≡ f a2

We have a proof (p : a1 ≡ a2) and need to produce a proof of type (f a1 ≡ f a2). If we pattern match on

p, then Agda will determine that a1 and a2 must be the same based on the type of the refl constructor.

Now the goal reduces to (f a1 ≡ f a1), which we can simply prove using refl:

cong : ∀ {A B : Set} {a1 a2 : A} → (f : A → B) → a1 ≡ a2 → f a1 ≡ f a2

cong f refl = refl -- Goal: f a1 ≡ f a1

Agda also includes record types, which can be used to bundle several types together as a single type.

The primary advantage of record types is that they give names to the data elements in a dependent

product. Consider the example record type:

record LengthAndVector (A : Set) : Set where

constructor [,]

7

field

length : N

vector : Vec A length

double-length : N

double-length = length +n length

Records can take parameters, and they must fit into some universe type. In this case, LengthAndVector

takes a parameter A : Set and LengthAndVector itself belongs to Set. The contents of a record type are

determined by its fields. The record type LengthAndVector has two fields: length, and vector (which

depends on length). Record types can also include local definitions that use the data given by the fields.

For example, LengthAndVector includes a local definition for double-length. To construct a value of a

record type, we must construct a value for each of its fields. To do this, we use the record{...} syntax:

lv : LengthAndVector Bool

lv = record { length = 1 ; vector = true :: [] }

Or, since this record type includes a constructor declaration, we can use the name of the declared

constructor, as in:

lv’ : LengthAndVector Bool

lv’ = [1 , (true :: [])]

These two definitions are equivalent; the latter is just syntactic sugar for the former. To access the local

definitions for a record, we can use the following syntax:

lv-double-length : N

lv-double-length = LengthAndVector.double-length lv

1.3 Propositions As Types

The previous section introduces Agda as a functional programming language, but it is also a proof

assistant. This brings us to a concept called the Curry-Howard correspondence or propositions-as-

types. The propositions-as-types paradigm is the recognition of the direct correspondence between

8

logical systems and typed functional programming languages. In the case of Agda, this means that a

proposition P can be viewed as a type and vice versa. Thus we can use the phrases “terms of type P,”

“elements of P,” and “proofs of P” interchangeably. Under this view, proofs of P are programs that

produce elements of the corresponding type!

For example, the types > and ⊥ correspond to the true proposition and false proposition, respec-

tively. A function between two types corresponds to an implication between two propositions. The

function exFalso above can be viewed as a proof that, from falsehood, anything can be proven. An even

simpler example from propositional logic is the rule modus ponens that says “if (A =⇒ B) and A are

provable, then B is provable,” where =⇒ is implication in propositional logic. This rule corresponds

to function application in Agda:

app : ∀ {A B : Set} → (A → B) → A → B

app f x = f x

We can also represent logical conjunction and disjunction as data types:

data ×’ (A B : Set) : Set where

, : A → B → (A ×’ B)

data] (A B : Set) : Set where

inj1 : A → (A] B)

inj2 : B → (A] B)

To prove the conjunction of A and B (i.e., A ×′ B)1 we need a proof of A and a proof of B. To prove

the disjunction of A and B (i.e., A] B) we need either a proof of A or a proof of B. The negation of a

proposition is defined by:

¬ : Set → Set

¬ P = P → ⊥

In terms of propositions, this definition says that P is considered false when P can be used to prove a

false proposition. Not every type has an obvious translation as a proposition —e.g., natural numbers

and list types do not —but there is a correspondence nevertheless.

1We rename the product type × from the standard library to ×′ and use × as the name of the type former in
the calculus N .

9

It is worth noting that proofs in Agda must be constructive. A constructive proof of proposition P

is an algorithm that produces an object satisfying P (or an element of P when viewed as a type). In

classical (i.e., non-constructive) logic, a proposition can be proven simply by showing that there must

exist an object satisfying the proposition. It is not required in classical logic to actually produce such

an object. Such a non-constructive proof will not do in Agda.

1.4 Nested Types and The Calculus N

The calculus N that we are formalizing in this thesis is itself a functional programming language. It

includes a type system with base types like > and ⊥ and rules for constructing more complex types,

including an inductive type former similar to the data declaration in Agda. In particular, the type

system can express nested types. Nested types are less expressive than dependent types but generalize

the commonly used algebraic data types (ADTs) like List A and N.

An ADT must be defined only in terms of itself, in the following sense: if a constructor for the data

type T A takes an argument whose type is some instance of T, the instance is required to be T A. For

example, in the declaration of List A, cons cannot take an argument of type List (A×′ >) or List B for

any other type B different from A: only List A is allowed.

Nested types are a more general class of types that can, for example, express the type of perfectly

balanced binary trees with data at the leaves. This nested type is defined in Agda as:

data PTree (A : Set) : Set where

pleaf : A → PTree A

pnode : PTree (A ×’ A) → PTree A

(2)

Nested types are more general than ADTs because nested types impose fewer restrictions on the types

of constructors. In particular, the constructors for a nested type T A can take arguments whose types

are different instances of T. For example, in the declaration of PTree A, the pnode constructor takes

an argument of type PTree (A×′ A). This additional structure in the data type declaration of PTree

enforces the constraint that the inhabitants of PTree A are perfectly balanced binary trees with elements

of A at the leaves. Thus PTree can be seen as a version of the List ADT with an additional constraint

that the lists must have lengths that are powers of two.

10

The calculus N also includes term syntax and inference rules for constructing programs over nested

types. The term syntax includes built-in operators for expressing pattern matching, a particular stylized

form of recursion, and the uniform mapping of a function over a data type.

Once the syntax of types and terms has been specified for a language, we can consider models of

the language. A model assigns meaning, or semantics, to the syntax of a language. Models allow us to

reason about the constructs in a language based on their semantic properties rather than their syntax.

For example, a particular model may allow us to prove that a language is logically consistent, or that

all programs written in the language are terminating.

Our model, defined in terms of category theory, gives a semantics based on sets and a semantics

based on relations over these sets. The set semantics maps types to sets and terms to elements of these

sets. The relation semantics maps types to relations and terms to pairs of related elements, exactly

in parallel to the set semantics. Our model is parametric, meaning we have an Identity Extension

Lemma, which expresses a uniformity property of the interpretations of types, and an Abstraction

Theorem, which expresses that the set interpretations of terms in related environments are related in

the relational interpretation of the term’s type. Parametricity allows us to prove properties of programs

based solely on their types, yielding so-called free theorems. Parametricity and its consequences will be

explained further after we formalize the relation semantics.

The structure of the thesis is as follows. In Chapter 2 we present the syntax of types in the calculus

N and formalize the syntax and inference rules. In Chapter 3 we define some basic concepts from

category theory and show how these concepts are formalized in Agda. In Chapter 4 we present and

formalize the set semantics for our type system, and in Chapter 5 we formalize the term syntax. In

Chapter 6 we give a partial formalization of the set semantics for terms and describe some limitations

of our formalization. In Chapter 7 we formalize the relation semantics of types. In Chapter 8 we give

a partial formalization of parametricity for our model. Chapter 9 concludes and discusses future work.

11

Chapter 2

Syntax of Types

In this chapter we describe the syntax of types for the calculus N and its formalization in Agda. To

do this, we must formalize the notions of type variables, type contexts, type formation rules, and other

constructs used to define the syntax of N . We will also define weakening and substitution functions for

types and prove that these operations preserve the type formation rules, i.e., if a type is well-formed,

then it is still well-formed after substituting or weakening.

2.1 Type Variables

The type expressions of N are built up from type variables, constant types 0 and 1, and type formers

such as + and ×. Type variables are split into two classes: type constructor variables and functorial

variables. Functorial variables play a special role in the formation of types, indicating that the resulting

type should act as a functor with respect to these variables. For a type to be considered functorial, it

must support a map operation that uniformly applies a function to the data structure without modifying

its shape. For example, the List data type is functorial. Given a list

cons x1 (cons x2 (cons x3 nil))

we can apply a function f to each element without modifying the structure of the list to get:

cons (f x1) (cons (f x2) (cons (f x3) nil))

When constucting the List type in the calculus N , we can use either a functorial variable or a type

constructor variable for the type of the list elements, depending upon whether we need a map operation

12

for lists of elements of that type. A type constructed with functorial variables should support a map

operation for those variables, but we do not necessarily expect this for type constructor variables. Type

constructor variables are also referred to as non-functorial variables. Types can contain both functorial

variables and type constructor variables.

There are many different approaches to representing variables in a formalization. Variables can be

assigned user-selected names, or they can be assigned numeric values based on their positions in an

expression. The latter approach is called De Bruijn indexing [2] and avoids the issue of alpha equivalence

that arises when there are two expressions that differ only in the names of their bound variables. For

example, λx.x and λy.y are alpha equivalent expressions. However, we are not really concerned with

alpha equivalence in this formalization, so we have chosen to formalize variables using names. The

exact representation of variable names is not important as long as the type for variable names supports

decidable equality for distinguishing between different variables. A proposition P is decidable if there

exists a function that always produces either a “yes” answer indicating P is true or a “no” answer

indicating P is false. The type of variable names is called Id in the formalization:

Id : Set

Id = String

In this formalization we use Agda’s built-in String type for variable names, but other types such as the

type of natural numbers would also work. To distinguish our two sets of variables, we can simply define

two different data types, one for each kind of type variable:

data TCVar : N → Set where

ˆT : Id → (k : N) → TCVar k

data FVar : N → Set where

ˆF : Id → (k : N) → FVar k

Each of these data types is indexed by a natural number k, giving the arity of the variables included in

the type. This means an element of TCVar k (resp., FVar k) is a k-ary type constructor (resp., functorial)

variable.

13

2.2 Type Expressions

Now that we have defined type variables, we can define the grammar of type expressions for N . The

grammar of type expressions for N is given in [5] as:

FP(V) ::= 0 | 1 | NatPFP(V) FP(V) | FP(V) + FP(V) | FP(V)×FP(V)

| V FP(V) | P FP(V) |
(
µϕ k.λα1...αk.FP,α1,...,αk,ϕ(V)

)
FP(V)

A type expression over P and V is any element of FP(V), where P and V are disjoint sets of functorial

variables and type constructor variables, respectively. We use the terms type and type expression

interchangeably, and use the latter when we want to distinguish type expressions from Agda types,

type variables, or typing judgments (see Section 2.4). The syntax F X indicates that F is either a type

variable or a subexpression of the form (µϕ k.λα1...αk.FP,α1,...,αk,ϕ(V)) , and the arity of F matches

the length of the vector of type expressions X. The notation ψk indicates that ψ is a variable of arity k,

and the arity of a type expression (µϕ k.λα1...αkFP,α1,...,αk,ϕ(V)) is the arity of its recursion variable

ϕ. As a matter of convention, we use letters from the beginning of the Greek alphabet (e.g., α, β, γ) for

variables of arity 0 and letters from later in the alphabet (e.g., ϕ and ψ) for variables of arity greater

than 0.

The two types 0 and 1 represent the empty type (⊥) and unit type (>), respectively. The type

NatαF G represents the type of natural transformations between types F and G. We call F and G the

domain and codomain, respectively, of NatαF G and say that NatαF G is natural in the arity 0 variables

in α. To a non-category-theorist, a natural transformation can be thought of as a uniformly defined

polymorphic function between functorial types F and G that satisfies some commutativity conditions

with the map operations for F and G. A natural transformation that is natural in zero variables is

simply a function, so the Nat type Nat∅F G is the type of functions between F and G. The types F +G

and F ×G represent the standard sum (]) and product (×′) types. The types of the form V FP(V) are

applications of type constructor variables, and those of the form P FP(V) are applications of functorial

variables. Note that a separate case for standalone variables is not needed, since this can be represented

as a 0-ary variable applied to a vector of length zero. The µ-type (µϕ.λαF)G represents the application

to the types G of the least fixed point of its body F , with respect to ϕ and α. Note that ϕ and α must

be functorial variables and the variables in α must have arity 0. The µ-type is analogous to Agda’s data

14

declaration because it allows us to define inductive data types such as List, PTree, etc. However, the

type system of N is limited to nested types, so dependent data types such as Vec cannot be represented

in N .

We can express the grammar of type expressions as a data type in Agda, with a data constructor

for each kind of expression:

data TypeExpr : Set where

0 : TypeExpr

1 : TypeExpr

Natˆ [,] : ∀ {k : N} → Vec (FVar 0) k → TypeExpr → TypeExpr → TypeExpr

+ : TypeExpr → TypeExpr → TypeExpr

× : TypeExpr → TypeExpr → TypeExpr

AppT [] : ∀ {k : N} → TCVar k → Vec TypeExpr k → TypeExpr

AppF [] : ∀ {k : N} → FVar k → Vec TypeExpr k → TypeExpr

µ [λ ,] : ∀ {k : N} → FVar k → Vec (FVar 0) k → TypeExpr → Vec TypeExpr k → TypeExpr

The data constructors for this type correspond directly to the rules of the grammar FP(V). We use the

type indices for Vec, FVar, and TCVar to enforce the aforementioned constraints on arities and vector

lengths in applications and µ-types.

Let us consider some example types. The type PTree α is represented in the syntax of N as

(µϕ.λβ.β + ϕ(β × β))α

This corresponds to the Agda definition of PTree in (2). The body of the µ-type is a sum with a summand

for each constructor. The pleaf constructor just takes an argument of type A, which corresponds to the

type variable β in this example. The pnode constructor takes an argument of type PTree (A×′ A). To

refer to the type PTree being defined in the syntax of N , we use the recursion variable bound by µ, so

that PTree (A×′ A) corresponds to ϕ(β × β). The type PTreeα would be represented as the following

element of TypeExpr:

15

PTree-α : TypeExpr

PTree-α = µ ϕ [λ [β] , AppF β [[]] + AppF ϕ [[AppF β [[]] × AppF β [[]]]]] [AppF α [[]]]

(3)

Here β and α are functorial variables of arity 0 and ϕ is a functorial variable of arity 1. There is a lot

going on syntactically, so let’s break PTree-α up into its components.

First note that in order to consider β as a type expression rather than a type variable, we must

apply it to a vector of zero arguments, i.e., we must write it as AppFβ[[]]. It is somewhat tedious to

write AppFβ[[]] every time we want to use β as a type expression as opposed to a type variable, so to

avoid this, we introduce an auxiliary function VarExpr that turns a (functorial) type variable of arity 0

into a type expression:

VarExpr : FVar 0 → TypeExpr

VarExpr β = AppF β [[]]

Note that the empty vector is denoted by [], and a singleton (i.e., length 1) vector containing x can be

written as [x] in Agda. The body of the µ-type is written as β + ϕ(β × β) in N . This expression is

represented in Agda as the following element of TypeExpr:

PTree-body : TypeExpr

PTree-body = VarExpr β + AppF ϕ [[VarExpr β × VarExpr β]]

PTree-body is a sum type whose first component is β and whose second component is ϕ applied to (the

singleton vector containing) β × β. The argument to PTree is a singleton vector containing the type

expression α. The vector must have length 1 to match the arity of ϕ. Again, we must apply α to a

vector of zero arguments for it to be an element of TypeExpr:

PTree-args : Vec TypeExpr 1

PTree-args = [VarExpr α]

Given the type expressions for the body and the vector of type expressions for the argument, we can

give a more concise definition of PTree-α:

PTree-α : TypeExpr

PTree-α = µ ϕ [λ [β] , PTree-body] PTree-args

16

This gives precisely the same definition as (3). Note that we have β appearing immediately after the λ

rather than AppFβ[[]] because the µ constructor

µ [λ ,] : ∀ {k : N} → FVar k → Vec (FVar 0) k → TypeExpr → Vec TypeExpr k → TypeExpr

expects a vector of 0-ary type variables rather than type expressions in that position.

2.3 Type Contexts

A type is formed with respect to a type context. A type context indicates which variables are in scope,

i.e., which variables can appear in the type. The calculus N includes two kinds of contexts: functorial

contexts and type constructor, or non-functorial, contexts. A type constructor context contains type

constructor variables, while a functorial context contains functorial variables.

In [5], a context is defined as a set of type variables, using the standard mathematical definition

of sets. In other words, contexts in [5] contain at most one occurrence of each variable. It turns out

that this uniqueness of variables in a context is not necessary to define the syntax of types, and it is

somewhat simpler to formalize contexts as structures which allow repetition rather than sets (which do

not).

We can represent both functorial and non-functorial contexts with a single Agda data type param-

eterized over a function V : N→ Set that takes a natural number and returns a type. This parameter

is intended to be instantiated with TCVar or FVar.

infixl 20 ,,

data TypeContext (V : N → Set) : Set where

∅ : TypeContext V

,, : ∀ {k : N} → TypeContext V → V k → TypeContext V

A type context is either empty or constructed from a new variable and another type context. New

variables are added on the right, as in (Γ,,v), rather than on the left (which is standard for lists and

vectors). Note that a type context can contain variables of different arities. This is one reason why we

can’t simply define type contexts as List (TCVar k) or Vec (TCVar k) n. Indeed, the type TCVar k only

includes variables of a specific arity k, so a list of type List (TCVar k) could only contain variables of

arity k.

17

Since the variable k in the ,, constructor of TypeContext does not appear in its return type, a

TypeContext may contain variables of different arities, as desired. Given this generic definition of type

contexts, we can define type constructor contexts and functorial contexts as instances of TypeContext.

TCCtx : Set

TCCtx = TypeContext TCVar

FunCtx : Set

FunCtx = TypeContext FVar

For convenience, we give names to the empty contexts of both varieties:

∅tc : TCCtx

∅tc = ∅

∅fv : FunCtx

∅fv = ∅

We will also need a function for adding a specific number of variables to a context. Since some

types (e.g., type variable application) require a specific number of variables, this operation is needed to

ensure that the context contains the correct number of variables. This function is parameterized over

a function of type N → Set just as TypeContext is, so it can be instantiated with TCVar or FVar as

necessary:

,++ : ∀ {V : N → Set} {k n : N} → TypeContext V → Vec (V k) n → TypeContext V

Γ ,++ [] = Γ

Γ ,++ (α :: αs) = (Γ ,++ αs) ,, α

Note that this function ,+ + appends a vector of variables of a specific arity k to a context. We

could define a function that simply concatenates two contexts, regardless of their content. However, in

all situations when we need to extend a context with multiple variables, the variables all have the same

arity, so the ,+ + operation will suffice.

To form some types, we need to know that a certain variable is present in the context. For this

purpose, we define the proposition “context Γ contains variable v” with the following data type:

18

data 3 : ∀ {V : N → Set} {k : N} → TypeContext V → V k → Set where

lookupZ : ∀ {V : N → Set} {k : N} {Γ : TypeContext V} {v : V k}

→ (Γ ,, v) 3 v

lookupDiffId : ∀ {V : N → Set} {k : N} {Γ : TypeContext V} {v v’ : V k}

→ v 6≡ v’

→ Γ 3 v

→ (Γ ,, v’) 3 v

lookupDiffArity : ∀ {V : N → Set} {k j : N} {Γ : TypeContext V} {v : V k} {v’ : V j}

→ k 6≡ j

→ Γ 3 v

→ (Γ ,, v’) 3 v

This data type is also referred to as context lookup or the context lookup relation. The constructor

lookupZ gives a proof that, for any nonempty context, the rightmost element v appears in the context.

The lookupDiffId and lookupDiffArity constructors take proofs that a variable v appears in a context Γ

and prove that v appears in a larger context Γ,,v′ These constructors also require that v and v′ are

different, either in name, in arity, or both. These proofs of inequality enforce the constraint that there

is at most one proof that a variable is in a context. The implementation above ensures that although

a variable may appear in a context multiple times, a proof that Γ 3 v will always be the proof for the

rightmost occurrence of v.

2.4 Type Formation Rules

Now that we have defined type variables, type expressions, contexts, and the context lookup relation,

we can define the set of well-formed types as a data type in Agda. A typing judgment Γ; Φ ` F asserts

that the type F is well-formed with respect to the non-functorial context Γ and the functorial context

Φ. The set of well-formed types is constructed inductively from type formation rules. Type formation

rules consist of 0 or more preconditions and a conclusion (a typing judgment) with a horizontal line

separating the preconditions and the conclusion.

19

Γ; Φ ` 0 Γ; Φ ` 1

Γ;α0 ` F Γ;α0 ` G

Γ; ∅ ` Natα
0

F G

ϕk ∈ Γ ∪ Φ Γ; Φ ` F
Γ; Φ ` ϕkF

Γ; Φ ` F Γ; Φ ` G
Γ; Φ ` F +G

Γ; Φ ` F Γ; Φ ` G
Γ; Φ ` F ×G

Γ;α0, ϕk ` F Γ; Φ ` G
Γ; Φ ` (µϕk.λα0. F)G

Figure 2.1: Type formation rules

In the calculus N , there is one formation rule for each kind of type expression. These formation

rules are displayed in Figure 2.1. The overbar in Γ; Φ ` F (e.g., in the µ-type formation rule) indicates

a vector of typing judgments.

The formation rules for 0 and 1 have no preconditions, so these types can be formed in any context.

The type Natα
0

F G can be formed in contexts Γ and ∅ if F and G only have α0 in their functorial

contexts, i.e., Γ;α0 ` F and Γ;α0 ` G. The conclusion for Natα
0

F G has an empty functorial context

because the Nat type binds all of the variables in α0, meaning those variables are no longer in scope

outside of the Nat type. While it is technically possible to have a type such as Natα
0

F (Natα
0

F G), the

α0 variables bound by the outer Nat type are necessarily different variables from those bound by the

inner Nat type, despite having the same names. However, we are not really interested in such nested

Nat types, and we avoid such naming conflicts by always using distinct names for distinct variables. The

type ϕkF of variable application can be formed in contexts Γ and Φ if ϕk appears in one of the contexts

and, for each Fi in F , we have Γ; Φ ` Fi. Given two types F and G with Γ; Φ ` F and Γ; Φ ` G,

we can form both the sum type F + G and the product type F × G in contexts Γ and Φ. The type

(µϕ.λαF)G can be formed if Γ; Φ ` Gi for each Gi in G and Γ;α0, ϕk ` F . The latter entails that the

only functorial variables allowed to appear in F are ϕk and the variables in α0. This restriction on F

is necessary to ensure that the Identity Extension Lemma holds for µ-types.

We can formalize the set of well-formed types as a data type, giving one constructor for each of the

formation rules in Figure 2.1:

data o ` : TCCtx → FunCtx → TypeExpr → Set where

0-I : ∀ {Γ : TCCtx} {Φ : FunCtx} → Γ o Φ ` 0

1-I : ∀ {Γ : TCCtx} {Φ : FunCtx} → Γ o Φ ` 1

20

Nat-I : ∀ {Γ : TCCtx} {Φ : FunCtx} {k : N} {αs : Vec (FVar 0) k}

{F G : TypeExpr}

→ (`F : Γ o (∅ ,++ αs) ` F)

→ (`G : Γ o (∅ ,++ αs) ` G)

→ Γ o Φ ` Natˆ αs [F , G]

AppT-I : ∀ {Γ : TCCtx} {Φ : FunCtx} {k : N} {ϕ : TCVar k}

→ (Γ3ϕ : Γ 3 ϕ)

→ (Fs : Vec TypeExpr k)

→ (`Fs : foreach (λ F → Γ o Φ ` F) Fs)

→ Γ o Φ ` AppT ϕ [Fs]

AppF-I : ∀ {Γ : TCCtx} {Φ : FunCtx} {k : N} {ϕ : FVar k}

→ (Φ3ϕ : Φ 3 ϕ)

→ (Fs : Vec TypeExpr k)

→ (`Fs : foreach (λ F → Γ o Φ ` F) Fs)

→ Γ o Φ ` AppF ϕ [Fs]

+-I : ∀ {Γ : TCCtx} {Φ : FunCtx} {F G : TypeExpr}

→ (`F : Γ o Φ ` F)

→ (`G : Γ o Φ ` G)

→ Γ o Φ ` F + G

×-I : ∀ {Γ : TCCtx} {Φ : FunCtx} {F G : TypeExpr}

→ (`F : Γ o Φ ` F)

→ (`G : Γ o Φ ` G)

→ Γ o Φ ` F × G

µ-I : ∀ {Γ : TCCtx} {Φ : FunCtx}

{k : N} {ϕ : FVar k}

{αs : Vec (FVar 0) k} {F : TypeExpr}

→ (`F : Γ o (∅ ,++ αs) ,, ϕ ` F)

→ (Gs : Vec TypeExpr k)

21

→ (`Gs : foreach (λ G → Γ o Φ ` G) Gs)

→ Γ o Φ ` µ ϕ [λ αs , F] Gs

The typing judgment data type o ` is indexed by a non-functorial context, a functorial context, and

a type expression. The elements of this data type can be thought of as derivation trees that show the

steps taken to prove that the N type represented by the indexing type expression is well-formed with

respect to the two indexing contexts.

The 0-I and 1-I data constructors express that 0 and 1 can be formed in any context. The Nat-I

data constructor expresses that F and G must be formed with a functorial context of αs, as expected1.

However, unlike the conclusion of the Nat formation rule in Figure 2.1, the return type of Nat-I is

Γ o Φ ` Nat∧αs[F,G], with Φ as the functorial context rather than ∅. Initially we used ∅ for the

functorial context here, but this makes it impossible to pattern match on a term of type Γ oΦ ` F with

the Nat-I constructor unless Φ = ∅. Also, despite the fact that Nat types are always formed with an

empty context, we may want to introduce functorial variables to the context of a Nat type by weakening

(see Section 2.5). For these reasons, the data constructor Nat-I allows for a Nat type to be formed in

an arbitrary functorial context Φ.

The formation rule for type variable application is split into two data constructors: AppT-I is for

application of type constructor variables and AppF-I is for application of functorial variables. The AppT-I

and AppF-I data constructors differ only in the type of the variable ϕ. The AppT-I data constructor

expresses that, in order to form the type of variable application, we must choose a non-functorial context

Γ, a functorial context Φ, a natural number k, and a type constructor variable ϕ of arity k. We must

also give a proof that ϕ appears in Γ, a vector of type expressions of length k, and a proof that each

of the type expressions in this vector is well-formed with respect to Γ and Φ. The assertion that each

type expression in the vector is well-formed is formalized in terms of the foreach function:

foreach : ∀ {a b : Level} {A : Set a} {n : N} → (P : A → Set b)

→ Vec A n → Set b

foreach P [] = big>

foreach P (x :: xs) = P x ×’ foreach P xs

The foreach function takes a predicate P : A→ Set b and a vector xs : Vec A n and returns a proposition

1Since overbars cannot be displayed in Agda code, we append an ‘s’ to indicate that αs is a vector of variables. This
convention is also used for other vectors throughout the implementation.

22

(an element of Set b) that asserts P holds for every element of xs. The base case for an empty vector

returns a trivially true proposition (big> is a universe-polymorphic version2 of the unit type >, which

can be thought of as a trivially true proposition). The inductive case returns a proposition asserting

that P holds for the first element x and P also holds for the tail of the list xs. In other words, to

construct a proof of foreach P xs, we must construct a proof of P xi for each xi in the vector xs. Getting

back to the definition of the typing judgment, a term of type foreach (λG→ Γ o Φ ` G) Gs consists of a

proof of Γ o Φ ` Gi for each Gi in Gs, corresponding to Γ; Φ ` G in Figure 2.1.

The data constructors for sum and product types express that Γ o Φ ` F and Γ o Φ ` G are the only

preconditions required to form sum and product types.

The µ-I data constructor expresses that the body F must be formed with a functorial context

containing only αs and ϕ. The µ-I data constructor also uses the foreach function to require that we

have a proof of Γ o Φ ` Gi for each Gi in Gs.

Let us consider some example typing judgment derivations. Earlier in Section 2.2 we showed how

to construct the term corresponding to the type expression

(µϕ.λβ.β + ϕ(β × β))α

in Agda. We now show how to construct the term corresponding to the typing judgment

∅;α ` (µϕ.λβ.β + ϕ(β × β))α

in Agda:

`PTree-α : ∅tc o ∅fv ,, α ` PTree-α

`PTree-α = µ-I `body PTree-args (`args , bigtt)

where 0 6≡1 : 0 6≡ 1

06≡1 = λ ()

β,ϕ3β : (∅fv ,, β ,, ϕ) 3 β

β,ϕ3β = lookupDiffArity 0 6≡1 lookupZ

2The unit type > from the standard library is defined as an element of Set. To keep the type of foreach as general as
possible, we use big> : ∀{`} → Set `, which belongs to Set ` for any universe level ` we choose. The single constructor for
big> is bigtt : big>. We need this generality in some cases to use foreach on a predicate P : A → Set b valued in a higher
universe b.

23

`β : ∅tc o ∅ ,, β ,, ϕ ` VarExpr β

`β = AppF-I β,ϕ3β [] bigtt

β×β : TypeExpr

β×β = VarExpr β × VarExpr β

`β×β : ∅tc o ∅ ,, β ,, ϕ ` β×β

`β×β = ×-I `β `β

`ϕβ×β : ∅tc o ∅ ,, β ,, ϕ ` AppF ϕ [[β×β]]

`ϕβ×β = AppF-I lookupZ [β×β] (`β×β , bigtt)

`body : ∅tc o ∅ ,, β ,, ϕ ` PTree-body

`body = +-I `β `ϕβ×β

`args : ∅tc o ∅fv ,, α ` VarExpr α

`args = AppF-I lookupZ [] bigtt

This proof is constructed using a where block in Agda, which allows us to introduce local definitions

that are in scope for the clause containing the where block. The type of `PTree-α indicates that the

type expression PTree-α is formed with an empty non-functorial context and with α in the functorial

context. At top-level, PTree-α is a µ-type, so `PTree-α is constructed using µ-I. To use µ-I, we must

give a proof that the body of the µ-type is well-formed and we must also give a proof that the argument

type is well-formed. These proofs are called `body and `args, respectively. The term for `body is

constructed using +-I and proofs that β and ϕ(β × β) are well-formed. The term for `args is a simple

application of AppF-I, where lookupZ : ∅fv,,α 3 α is the proof that α appears in the context ∅fv,,α. The

only other context lookup proof that is needed is a proof that β appears in ∅fv,,β,,ϕ, which is proved

using lookupDiffArity, a proof that zero is not equal to one, and a proof that β appears in the context

∅fv,,β. The type A 6≡ B is a synonym for A ≡ B→ ⊥, so it asserts that two types are not equal according

to the propositional equality type from (1). The proof that 0 is not equal to 1 is trivial, and is proven

in Agda using the absurd pattern λ(). The absurd pattern can be used here because Agda can deduce

automatically that there are no terms of type 0 ≡ 1.

24

2.5 Weakening

In addition to formalizing the set of well-formed types, we would like to prove some properties about

it. The first property we would like to prove is that the type formation rules respect weakening. Given

a typing judgment Γ; Φ ` F, we can weaken the typing judgment by adding extra variables that do not

appear in F to Γ or Φ. To prove that our type formation rules respect weakening, we must show that for

any Γ, Φ, F, and ϕ, if Γ; Φ ` F is well-formed, then so is Γ; Φ, ϕ ` F (or Γ, ϕ; Φ ` F, for non-functorial

variables). Since we have two contexts, there are two notions of weakening for the calculus N . The

proofs that our type formation rules respect these two notions of weakening are very similar, so we will

only describe the proof for functorial variables.

To show that the type formation rules respect weakening of functorial variables, we must define a

function of the following type:

weakenFunCtx : ∀ {k : N} { Γ : TCCtx } {Φ : FunCtx} {F : TypeExpr} (ϕ : FVar k)

→ Γ o Φ ` F

→ Γ o Φ ,, ϕ ` F

This function is defined mutually3 with an analogous function for vectors of type expressions:

foreach-preserves-weakening-FV : ∀ {k n : N} {Γ : TCCtx } {Φ : FunCtx} {ϕ : FVar k}

→ (Gs : Vec TypeExpr n)

→ foreach (λ G → Γ o Φ ` G) Gs

→ foreach (λ G → Γ o Φ ,, ϕ ` G) Gs

The function weakenTCCtx is defined by pattern matching on the argument of type Γ o Φ ` F. For

the cases of 0-I, 1-I, and Nat-I, the proofs are trivial because these data constructors can be used to

form a type in an arbitrary functorial context. The cases for +-I , ×-I , AppT-I, and µ-I are proved

by straightforward applications of induction, i.e., by recursively calling weakenFunCtx. The interesting

case is for AppF-I, which we show step by step:

weakenFunCtx (ϕ ˆF k) (AppF-I {ϕ = ψ ˆF j} Φ3ψ Gs `Gs) = {!!}

-- Goal: Γ o Φ ,, (ϕ ^F k) ` AppF (ψ ^F j) [Gs]

3We could just define weakenFunCtx and then use the map function for Vec defined in the standard library (that applies
a function to every element in a vector) to apply weakenFunCtx to vectors, but this definition using the map function for Vec
is not accepted by Agda’s termination checker. To satisfy the termination checker, we define foreach-preserves-weakening-FV
mutually with weakenFunCtx.

25

First, we pattern match on the variable argument to get (ϕ ˆF k) : FVar k, and we also pattern match

on the (implicit) variable argument to AppF-I, using the syntax {ϕ = ψ ˆF j}. Although we normally

use the letters ϕ and ψ for terms of type FVar k or TCVar k, i.e., to represent a variable tagged with its

arity, we abuse notation here and use the letters ϕ and ψ for the variable names themselves. So in this

case, we have ϕ,ψ : String. To construct a term of the goal type, we need to use AppF-I, which requires

a context lookup of type (Φ,,ϕ ˆF k) 3 ψ ˆF j asserting that ψ ˆF j appears in the weakened context. We

already have a proof Φ3ψ : (Φ 3 ψ ˆF j) In order to prove that ψ ˆF j appears in the weakened context,

we need to know whether ϕ ˆF k and ψ ˆF j are the same variable. They may differ in their names, their

arities, or both.

In order to compare ϕ ˆF k and ψ ˆF j for equality, we need a function that computes whether two

natural numbers are equal, and we also need a function for comparing strings for equality. Propositional

equality (≡) for natural numbers and strings in Agda is decidable. Decidable propositions are

formalized in Agda using the Dec type from the standard library:

record Dec {p} (P : Set p) : Set p where

constructor because

field

does : Bool

proof : Reflects P does

A term of type Dec P consists of a boolean value, does, and a term of type Reflects P does, which

corresponds to a proof of P if does is true or a proof of the negation of P if does is false:

data Reflects {p} (P : Set p) : Bool → Set p where

ofy : (p : P) → Reflects P true

ofn : (¬p : ¬ P) → Reflects P false

The standard library also provides pattern synonyms to make pattern matching on terms of type Dec P

more concise:

pattern yes p = true because ofy p

pattern no ¬p = false because ofn ¬p

These pattern synonym declarations mean that we can write yes p instead of true because ofy p when

26

pattern matching on terms of type Dec P, and similarly for no p. If we define functions that implement

decidable equality for natural numbers and strings as

eqNat : ∀ (x y : N) → Dec (x ≡ y)

?
= : ∀ (s t : String) → Dec (s ≡ t)

then we can perform the case analysis needed for the AppF-I case of weakenFunCtx. The function

eqNat is defined by induction on its natural number arguments, and
?
= is provided in the standard

library. To perform the case analysis needed for weakenFunCtx, we use a with clause, which, borrowing

a phrase from the Agda documentation [7], allows us to pattern match on the result of an intermediate

computation. In this case, we want to compute whether j and k are equal and whether ψ and ϕ are

equal, so we pattern match on the results of eqNat j k and ψ
?
= ϕ:

weakenFunCtx (ϕ ˆF k) (AppF-I {ϕ = ψ ˆF j} Φ3ψ Gs `Gs) with eqNat j k | ψ ?
= ϕ

... | yes refl | yes refl = {!!} -- Goal: Γ o Φ ,, (ϕ ^F k) ` AppF (ϕ ^F k) [Gs]

... | yes refl | no ψ 6≡ϕ = {!!} -- Goal: Γ o Φ ,, (ϕ ^F k) ` AppF (ψ ^F k) [Gs]

... | no j 6≡k | = {!!} -- Goal: Γ o Φ ,, (ϕ ^F k) ` AppF (ψ ^F j) [Gs]

There are four possible cases, but the (no/yes) and (no/no) cases can be proven with the same

definition, which brings us down to the three cases in weakenFunCtx. Either the variables are identical

(names and arity match), the arities match and the names do not, or the arities do not match.

In the first case, we can use lookupZ : Φ,,ϕ ˆF k 3 ϕ ˆF k for the context lookup, since pattern

matching on refl twice tells Agda that j can be replaced with k and ψ can be replaced with ϕ in the

goal.

In the second case, the arities match, so both variables have arity k in the goal, and we also

have a proof that ψ is not equal to ϕ. In this case we can use lookupDiffId and Φ3ψ to prove that

Φ,,ϕ ˆF k 3 ψ ˆF k. Recall that lookupDiffId needs an argument of type ψ ˆF k 6≡ ϕ ˆF k indicating

that the variables (including arity) are not equal, and note that we have a proof ψ 6≡ϕ that the variable

names are not equal. To prove that the variables (including arity) are not equal, we can use an auxiliary

function

6≡-FVar : ∀ {k : N} → (v v’ : Id) → v 6≡ v’ → (v ˆF k) 6≡ (v’ ˆF k)

to get (6≡-FVar ψ ϕ ψ 6≡ϕ) : (ψ ˆF k) 6≡ (ϕ ˆF k). The function 6≡-FVar says that if two variable names

27

are not equal, then they are still not equal after being tagged with their arities, and this function is

defined by straightforward reasoning about proofs of equality.

In the last case above, the arities j and k do not match. We need a proof that ψ ˆF j appears in the

context Φ,,ϕ ˆF k, which we can prove using lookupDiffArity with arguments j 6≡k and Φ3ψ. We can now

complete the AppF-I case for weakenFunCtx,

weakenFunCtx (ϕ ˆF k) (AppF-I {ϕ = ψ ˆF j} Φ3ψ Gs `Gs) with eqNat k j | ϕ ?
= ψ

... | yes refl | yes refl = AppF-I lookupZ Gs (foreach-preserves-weakening-FV Gs `Gs)

... | yes refl | no ϕ6≡ψ = AppF-I (lookupDiffId (6≡-FVar ψ ϕ (6≡-sym ϕ6≡ψ)) Φ3ψ) Gs

(foreach-preserves-weakening-FV Gs `Gs)

... | no k 6≡j | = AppF-I (lookupDiffArity (6≡-sym k 6≡j) Φ3ψ) Gs

(foreach-preserves-weakening-FV Gs `Gs)

(4)

using foreach-preserves-weakening-FV in each case to prove that the type arguments Gs are well-formed

in the weakened context, i.e., foreach (λG→ Γ o Φ,,(ϕ ˆF k) ` G) Gs. The proof of

foreach-preserves-weakening-FV is given by induction on the length of the vector, calling weakenFunCtx

to prove that each individual type in the vector is well-formed in the weakened context. The proof that

the type formation rules respect weakening of non-functorial variables is nearly identical to the proof

of weakenFunCtx except that it is the AppT-I that requires a case analysis of variable equality.

2.6 Substitution

The calculus N also supports substitution of functorial variables. Given a type expression F that con-

tains a 0-ary functorial variable α, we can replace α with another type expression H. This substitution

is denoted F [α := H]. We can apply this substitution to a vector of type expressions, denoted by

F [α := H], and we can also substitute a vector of variables/type expressions in a single type expression,

denoted by F [α := H]. We refer to the substitution F [α := H] as first-order substitution, to contrast

it with second-order substitution of variables with arity greater than 0. Second-order substitution is

discussed in more detail at the end of this section.

28

We can define first-order substitution of type expressions as a function in Agda:

[:=] : TypeExpr → FVar 0 → TypeExpr → TypeExpr

0 [α := H] = 0

1 [α := H] = 1

Natˆ βs [F , G] [α := H] = Natˆ βs [F , G]

(F + G) [α := H] = (F [α := H]) + (G [α := H])

(F × G) [α := H] = (F [α := H]) × (G [α := H])

AppT ϕ [Gs] [α := H] = AppT ϕ [fo-substVec Gs α H]

AppF ϕ ˆF k [Gs] [(α ˆF j) := H] with eqNat k j | ϕ ?
= α

... | yes refl | yes refl = H

... | | = AppF (ϕ ˆF k) [fo-substVec Gs (α ˆF j) H]

(µ ϕ [λ βs , G] Ks) [α := H] = µ ϕ [λ βs , G] (fo-substVec Ks α H)

(5)

The cases for 0 and 1 are trivial because these types contain no variables. For the Nat case, since the

only functorial variables that should appear in F and G are the βs, and since these βs are not in the

context for the Nat type (i.e., the βs are bound by the Nat type), no substitution is applied. For the

sum, product, AppT-I, and µ-I cases, the substitution is applied recursively. For the AppF-I case, we

perform case analysis to check whether the variable being applied (ϕ ˆF k) is equal to the variable being

substituted (α ˆF j). If the variables are identical, then ϕ ˆF k, which necessarily has arity 0 (and thus

no arguments), is replaced with the type H. Otherwise, the substitution is just applied to the argument

types Gs. For the µ-I case, the substitution is not applied to the body G because the only functorial

variables in the body are bound. The first-order substitution function in (5) is defined mutually with

an analogous function for applying substitutions to vectors of type expressions:

fo-substVec : ∀ {n : N} → Vec TypeExpr n → FVar 0 → TypeExpr → Vec TypeExpr n

The function fo-substVec simply applies the substitution Fi[α := H] to each type expression Fi in a vector

of type expressions.

Given these definitions, we would like to prove that first-order substitution preserves well-formed

types. In other words, if a type is well-formed, then it should still be well-formed after an appropriately

typed substitution. We can formalize this in Agda as a function that takes two typing judgments and

returns a typing judgment for a type expression involving a substitution:

29

fo-subst-preserves-typing : ∀ {Γ : TCCtx} {Φ : FunCtx} {α : FVar 0} {F H : TypeExpr}

→ Γ o (Φ ,, α) ` F

→ Γ o Φ ` H

→ Γ o Φ ` F [α := H]

This function is defined mutually with an analogous function for vectors of type expressions,

foreach-preserves-fo-substVec : ∀ {k : N} {Γ : TCCtx} {Φ : FunCtx} {α : FVar 0} {H : TypeExpr}

→ (Gs : Vec TypeExpr k)

→ Γ o Φ ` H

→ foreach (λ G → Γ o Φ ,, α ` G) Gs

→ foreach (λ G → Γ o Φ ` G) (fo-substVec Gs α H)

which is defined by induction on the length of the vector Gs, calling fo-subst-preserves-typing on each

type expression in Gs.

Since all cases in (5) except AppF-I just recursively apply the substitution, the corresponding cases

for fo-subst-preserves-typing can be proven using straightforward induction. Just as in (5), the interesting

case is for the AppF-I constructor:

fo-subst-preserves-typing {α = α ˆF j} (AppF-I {ϕ = ϕ ˆF k} Φ,α3ϕ Gs `Gs) `H = {!!}

-- Goal: Γ o Φ ` ((AppF (ϕ ^F k) [Gs]) [α ^F j := H] | eqNat k j | ϕ
?
= α)

In this case, we must prove that the substitution (AppF (ϕ ˆF k) [Gs]) [α ˆF j := H] is well-formed with

respect to contexts Γ and Φ. But notice that the goal type has some vertical bars, indicating the goal

type involves a with clause. In order to make goal to reduce further, we must also use a with clause here

to match on the results of eqNat k j and ϕ
?
= α.

fo-subst-preserves-typing {α = α ˆF j} (AppF-I {ϕ = ϕ ˆF k} Φ,α3ϕ Gs `Gs) `H with eqNat k j | ϕ ?
= α

... | yes refl | yes refl = {!!} -- Goal: Γ o Φ ` H

... | yes refl | no ϕ6≡α = {!!} -- Goal: Γ o Φ ` AppF (ϕ ^F j) [fo-substVec Gs (α ^F j) H]

... | no k 6≡j | = {!!} -- Goal: Γ o Φ ` AppF (ϕ ^F k) [fo-substVec Gs (α ^F j) H]

In the first case, the goal reduces to Γ oΦ ` H, and we can simply use `H to fill this hole. In the second

and third cases, ϕ ˆF k is not equal to α ˆF j, so the substitution is only applied to the arguments Gs.

These two cases are proven by straightforward induction on the vector of arguments Gs, similar to the

30

induction used in (4). The only notable difference between these proofs and the proofs in (4) is that,

in the latter proofs, we used lookupDiffId and lookupDiffArity to take a proof of Φ 3 v that v appears

in Φ and produce a proof of Φ,,v′ 3 v that v appears in a larger context Φ, , v′. But to prove the cases

above, we need to take a proof of Φ,,(α ˆF j) 3 ϕ ˆF k and produce a proof of Φ 3 ϕ ˆF k for a smaller

context. To do this, we must know that ϕ ˆF k and α ˆF j differ in name or in arity, which we have in

the code above as ϕ6≡α and k 6≡j.

We can also define the substitution of multiple 0-ary variables as a function in Agda

[:=]Vec : ∀ {k : N} → TypeExpr → (Vec (FVar 0) k) → (Vec TypeExpr k) → TypeExpr

by straightforward induction on the vector of variables. Given this definition, we can prove by induction

on the vector of type expressions Gs and the vector of variables αs that it preserves well-formed types.

That is:

[:=]Vec-preserves-typing : ∀ {k : N} {Γ : TCCtx} {Φ : FunCtx} (αs : Vec (FVar 0) k) {H : TypeExpr}

→ (Gs : Vec TypeExpr k)

→ Γ o (Φ ,++ αs) ` H

→ foreach (λ G → Γ o Φ ` G) Gs

→ Γ o Φ ` H [αs := Gs]Vec

0[ϕ :=α H] = 0

1[ϕ :=α H] = 1

(NatβF G)[ϕ :=α H] = Natβ F G

(ψF)[ϕ :=α H] =

{
ψ F [ϕ :=α H] if ψ 6= ϕ

H[α := F [ϕ :=α H]] if ψ = ϕ

(F +G)[ϕ :=α H] = F [ϕ :=α H] +G[ϕ :=α H]

(F ×G)[ϕ :=α H] = F [ϕ :=α H]×G[ϕ :=α H]

((µψ.λβ.F)G)[ϕ :=α H] = (µψ.λβ. F)G[ϕ :=α H]

Figure 2.2: Second-order substitution of functorial variables.

2.6.1 Second-order substitution

It was mentioned at the beginning of Section 2.6 that we also have a notion of substitution for variables

of arity greater than 0. Given our definition of first-order substitution, we can think of 0-ary variables

as holes that can be filled with a single type. Now consider a type expression containing the variable

ϕ of arity k (which is always applied to k arguments) and a type H containing a vector α containing

31

k 0-ary variables. We can replace ϕ with H, using the arguments of ϕ in place of the variables in

α. We write this as F [ϕ :=α H] and call this type expression the substitution of ϕ by H along the

variables in α. For example, given the type expressions ϕ1 and α + α, the second-order substitution

(ϕ1)[ϕ :=α (α+ α)] yields 1 + 1.

Like first-order substitution, second-order substitution is defined by induction on the structure of

the type expression. Before we get into the Agda definition of second-order substitution, let us consider

the definition of second-order substitution given in [5], shown in Figure 2.2.

As with first-order substitution, the cases for 0, 1, and Nat are trivial, and the cases for sums, prod-

ucts, and µ-types just recursively apply the substitution to subexpressions. In the variable application

case, we must check whether the variable ψ being applied is equal to the variable ϕ being substituted.

This is only possible if ψ is a functorial variable. If ϕ and ψ are equal in name and arity, then ψ is

replaced by H, and the variables in α are replaced by the recursively substituted arguments of ψ, i.e.,

the vector of type expressions F [ϕ :=α H]. If ϕ and ψ are not equal, then the second-order substitu-

tion is recursively applied to the arguments of ψ. When the arity of ϕ is 0, second-order substitution

coincides with first-order substitution.

This definition of second-order substitution is implemented in Agda as:

[:=[]] : ∀ {k : N} → TypeExpr → (FVar k) → Vec (FVar 0) k → TypeExpr → TypeExpr

0 [ϕ :=[αs] F] = 0

1 [ϕ :=[αs] F] = 1

Natˆ βs [G , K] [ϕ :=[αs] F] = Natˆ βs [G , K]

(G + K) [ϕ :=[αs] F] = (G [ϕ :=[αs] F]) + (K [ϕ :=[αs] F])

(G × K) [ϕ :=[αs] F] = (G [ϕ :=[αs] F]) × (K [ϕ :=[αs] F])

AppT (ψ ˆT j) [Gs] [ϕ :=[αs] F] = AppT (ψ ˆT j) [so-substVec Gs ϕ αs F]

AppF ψ ˆF j [Gs] [ϕ ˆF k :=[αs] F] with ψ
?
= ϕ | eqNat k j

... | yes refl | yes refl = F [αs := (so-substVec Gs (ϕ ˆF k) αs F)]Vec

... | yes refl | no k 6≡j = AppF (ψ ˆF j) [so-substVec Gs (ϕ ˆF k) αs F]

... | no ψ 6≡ϕ | = AppF (ψ ˆF j) [so-substVec Gs (ϕ ˆF k) αs F]

(µ ψ [λ βs , G] Ks) [ϕ :=[αs] F] = µ ψ [λ βs , G] (so-substVec Ks ϕ αs F)

(6)

As with first-order substitution, the second-order substitution function is defined mutually with a

32

function that applies the second-order substitution to a vector of type expressions:

so-substVec : ∀ {n k : N} → Vec TypeExpr n → FVar k → Vec (FVar 0) k → TypeExpr → Vec TypeExpr n

The function so-substVec takes a vector of type expressions of length n, a functorial variable of arity

k, a vector of 0-ary functorial variables of length k, and a type expression, and applies a second-order

substitution to every type expression in the vector of length n. The “so” in so-substVec stands for

“second-order.”

Given these definitions for second-order substitution, we can prove that second-order substitution

preserves well-formed types:

so-subst-preserves-typing : ∀ {k : N} {Γ : TCCtx} {Φ : FunCtx} {ϕ : FVar k} {αs : Vec (FVar 0) k}

→ (F H : TypeExpr)

→ Γ o (Φ ,, ϕ) ` F

→ Γ o (Φ ,++ αs) ` H

→ Γ o Φ ` F [ϕ :=[αs] H]

This function takes typing judgments for F and H and produces a typing judgment for the substitution

F[ϕ := [αs] H]. It is defined by induction on the structure of the typing judgment for F and is defined

mutually with an analogous function for vectors of type expressions:

so-substVec-preserves-typing : ∀ {n k : N} {Γ : TCCtx} {Φ : FunCtx} {ϕ : FVar k}

{αs : Vec (FVar 0) k} {H : TypeExpr}

→ (Gs : Vec TypeExpr n)

→ Γ o (Φ ,++ αs) ` H

→ foreach (λ G → Γ o Φ ,, ϕ ` G) Gs

→ foreach (λ G → Γ o Φ ` G) (so-substVec Gs ϕ αs H)

The proof of so-subst-preserves-typing is similar to the proof for fo-subst-preserves-typing, so we elide

the precise details. As usual, all cases except the AppF-I case are proved by routine applications of

induction. In the AppF-I case, we do a case analysis on the equality of ϕ and the applied variable ψ,

and there are three cases, in parallel with the AppF-I case of (6). If ϕ and ψ match in name and arity, a

first-order vector substitution is triggered (see Figure 2.2), and so we must use [:=]Vec-preserves-typing

to prove that the vector substitution of the form F[αs := ...]Vec is well-formed. If ϕ and ψ differ

in name or arity, then the second-order substitution is only applied to the arguments Gs, so we use

33

so-substVec-preserves-typing to prove that the type arguments Gs are well-formed after applying a second-

order substitution to each type expression in Gs.

34

Chapter 3

Category Theory

3.1 Category Theory Crash Course

For readers unfamiliar with the subject, category theory [1] can be thought of as a generalization of

the theory of sets and functions. Category theory is used to formalize various mathematical structures

and the relationships between these structures. The primary entity used in category theory is called a

category. A category consists of objects, which are somewhat analogous to sets, and morphisms, which

are somewhat analogous to functions. In contrast with sets, the objects of a category may be “opaque”

in the sense that the objects do not support any notion of containing elements. For example, the objects

of a category may be natural numbers, or bitstrings, or other non-set-like objects.

Categories are usually depicted as directed graphs called diagrams where the nodes represent objects

and the arrows represent morphisms. For example, the diagram

A B CidA
f

idB

g
idC

represents a category with three objects, A , B, and C, and five morphisms, idA, f , idB , g and idC . A

category must have an identity morphism idA for every object A, so sometimes these identity morphisms

are left implicit in the diagram. Thus the category above may also be depicted as:

A B C
f g

35

We refer to the endpoints of a morphism as the source object and target object of the morphism. For

example, the source object of f is A and the target object of f is B. This is denoted as f : A→ B. To

denote that A is an object in the category C, we write A ∈ ob(C) or A : C.

3.1.1 Formal Definition

Definition 3.1.1. Formally, a category C consists of the following data: a class (i.e., a collection that

may not necessarily be a set) ob(C) of objects, a class of morphisms ∀X,Y : C. C(X,Y) where each

morphism is assigned a source object and a target object, and a composition operator ◦ that composes

two morphisms where the source of the first morphism matches the target of the second morphism, and

the resulting morphism takes the source of the second morphism to the target of the first. The type

of the composition operator is therefore ∀X,Y, Z : C. C(Y,Z) → C(X,Y) → C(X,Z). For example, in

the diagram above, the composition of g : B → C and f : A → B is g ◦ f : A → C, which can be

pronounced as “g after f” or “g compose f .” To form a category, these data must must also satisfy the

following axioms:

• identity: for every morphism f : A→ B, it holds that f ◦ idA = f = idB ◦ f .

• associativity: for every triple of morphisms f : C → D, g : B → C, and h : A→ B, it holds that

(f ◦ g) ◦ h = f ◦ (g ◦ h).

The identity axiom states that composing a morphism f with an identity morphism simply yields f .

The associativity axiom states that the composition of morphisms is associative, so the order in which

we perform a chain of compositions does not matter. Notice that the definition of a category depends on

some notion of equality between morphisms. This notion of equality between morphisms is often taken

for granted in category theory textbooks, but we will have to address it directly in our formalization.

3.1.2 Examples of Categories

One of the most commonly used categories is the category Sets1 of sets and functions. An object

of Sets is a set and a morphism between two sets A and B is a function from A to B. The identity

morphisms in Sets are identity functions, and composition of morphisms is simply function composition.

Unlike objects of arbitrary categories, sets have elements, and we can reason about morphisms in Sets

1This category is sometimes denoted simply as Set, but we call it Sets in this thesis to avoid conflicts with the “Set”
(universe) keyword in Agda

36

(functions) pointwise, i.e., by considering how a morphism f : A → B acts on each element x ∈ A.

In fact, composition of morphisms in Sets is defined pointwise: the composition of g : B → C and

f : A→ C is defined (g ◦ f)x = g (f x) for each x ∈ A. It is straightforward to show that this pointwise

composition satisfies the identity and associativity axioms.

Another commonly used category is the category of natural numbers, which we denote as N. An

object of N is a natural number, and a morphism between natural numbers n and m exists if and only

if n ≤ m. The category of natural numbers is depicted by the following diagram:

0 1 2 ...

Since the relation ≤ is a preorder, i.e., a reflexive and transitive relation, the identity and compositions

come from reflexivity and transitivity, while the axioms are trivial because there is at most one morphism

n ≤ m for any objects n and m. By the same reasoning, any preorder can be considered a category,

where the objects are given by the underlying set of the preorder, and the morphisms are given by the

underlying relation of the preorder.

There are also many mechanisms in category theory for combining categories to produce new cat-

egories. For example, given two categories C and D, we can take the product category C × D whose

objects are pairs (A,B) where A : C and B : D and whose morphisms (f, g) : (A,B) → (A′, B′)

are pairs of morphisms where f : A → A′ in C and g : B → B′ in D. Composition of morphisms

in the product category is done componentwise, i.e., (f1, f2) ◦ (g1, g2) = (f1 ◦ g1, f2 ◦ g2). It is also

possible to define a k-ary product category Ck whose objects (resp. morphisms) are k-tuples of ob-

jects (resp. morphisms) from C. Composition of morphisms in Ck is also done componentwise, i.e.,

(f1, ..., fk) ◦ (g1, ..., gk) = (f1 ◦ g1, ..., fn ◦ gn).

3.1.3 Functors

Another fundamental notion in category theory is that of a functor. Informally, a functor between two

categories C and D is a mapping from C to D that preserves the categorical structure. In particular, a

functor from C to D maps objects of C to objects of D, and it also maps morphisms of C to morphisms

of D. The structure of a category is determined by its morphisms, and so for a functor to “preserve the

structure” of a category, it must map morphisms in a particular way.

37

Definition 3.1.2. Formally, a functor F from C to D, denoted as F : C → D, consists of a mapping of

objects, F0, and a mapping of morphisms, F1, and some properties. For each object A : C, there is a

corresponding object F0A : D. For each morphism f : A→ B in C, there is a corresponding morphism

F1f : F0A → F0B. Sometimes F0 and F1 are referred to as the “action on objects” and the “action

on morphisms,” respectively. To be considered a functor, F0 and F1 must satisfy the following functor

laws :

• identity: for every object A : C, it holds that F1(idA) = idF0A.

• homomorphism: for pair of morphisms g : B → C, f : A → B in C, it holds that F1(g ◦ f) =

F1g ◦ F1f .

In other words, F1 must preserve identities and compositions of morphisms. Just as we saw in

the axioms for the definition of a category, the functor laws require some notion of equality between

morphisms (the morphisms being compared for equality are in the category D in the identity and

homomorphism conditions above). A functor from C to C is called an endofunctor on C.

Given two functors G : D → E and F : C → D, we can compose them to get the functor G◦F : C → E

whose action on an object A : C is given by (G ◦F)0A = G0(F0A). The action of G ◦F on a morphism

f : A→ B is given by (G ◦ F)1f = G1(F1f).

3.1.4 Examples of Functors

The simplest example of a functor is the identity functor, I. Given a category C, the identity functor

on C maps every object to itself and does the same for morphisms. Clearly, these mappings satisfy the

functor laws, since I1(idA) = idA = idI0A and I1(g ◦ f) = g ◦ f = I1g ◦ I1f , where I0 and I1 are the

mappings on objects and morphisms, respectively, of I.

Another simple functor is the constant functor. Given categories C and D and an object d : D, the

constant functor Kd : C → D sends every object to d and sends every morphism to idd. The functor

laws are trivially satisfied because every morphism is mapped to idd.

Another example of a functor is the product functor − × − : Sets × Sets → Sets from the product

category of sets to the category of sets. Here we abuse notation, writing −×− to denote the product

functor, the product of categories, and the cartesian product of sets, depending on the types of the

arguments given. The functor − × − : Sets × Sets → Sets maps each pair of sets (A,B) ∈ Sets × Sets

to their cartesian product A × B. It maps each pair of morphisms (f, g) : (A,B) → (A′, B′) to the

38

function (f × g) : (A × B) → (A′ × B′) such that (f × g)(x, y) = (fx, gy). Identities and composition

of morphisms are given componentwise, i.e., (g1× g2) ◦ (f1× f2) = (g1 ◦ f1)× (g2 ◦ f2). This ensures

the functor laws are satisfied for (f × g), since they are satisfied for the components f and g in Sets.

Functors are a very useful concept for reasoning about data types in functional programming lan-

guages. Given a programming language whose types can be thought of as sets, we can model the types

and functions of this language in the category Sets. Let us denote the set associated to a type T as

JT K, called the interpretation of T . If we think of the types in the language as sets, then the terms of a

type T can be thought of as the elements of JT K. Functions in the language of type f : T → T ′ can be

thought of as functions JfK : JT K → JT ′K in the category Sets. If we have built-in notions of lists and

trees in our programming language, we can interpret both the list and tree data type constructors as

endofunctors on Sets. The List functor maps each set JT K to the set List0 JT K of lists of elements of JT K.

Given a function JfK : JT K → JT ′K, the List functor produces a function from List0 JT K → List0 JT ′K

that applies f to each element of the input list without modifying the structure of the list. Like with

the product functor, the identities and composition of morphisms are given “componentwise,” except

that a list may have 0 or more components rather than having exactly two components like a pair.

Similarly, the Tree functor maps each set JT K to the set Tree0 JT K of trees with elements of JT K at the

nodes, and maps a function JfK : JT K → JT ′K to a function Tree1 JfK : Tree0 JT K → Tree0 JT ′K that

applies JfK to each node in a tree without modifying the shape of the tree. Once again, the functor

laws will be satisfied because composition of morphisms are given “componentwise,” i.e., the composed

morphisms are applied one after another to each node in the tree. Many other data type constructors

can be viewed as functors, as we will see once we have implemented the set interpretation of types for

the calculus N .

It turns out that functors themselves can be used as the objects in a category. Such a category

is called a functor category, and functors between functor categories are called higher-order functors.

Natural transformations between higher-order functors are called higher-order natural transformations.

Functor categories and higher-order functors are used frequently in our formalization, and we will

formalize these notions in the next chapter.

3.1.5 Natural Transformations

The last categoryical concept introduced in this section is that of a natural transformation. Just as a

functor is a mapping between two categories, a natural transformation is a mapping between functors.

39

Definition 3.1.3. Given two categories C and D and two functors F,G : C → D, a natural transforma-

tion η between F and G is denoted with a double-arrow, i.e., η : F ⇒ G, and consists of the following

data:

• components: for every object A : C, we have a component of η at A , ηA : F0A→ G0A

• naturality: for every morphism f : A→ B in C, we have a commuting square

F0A G0A

F0B G0B

F1f

ηA

G1f

ηB

In order to have a commuting square, the paths in the diagram from top-left to bottom-right must be

equivalent, according to some specified notion of morphism equivalence. In the case shown above, this

means it must hold that ηB ◦ F1f = G1f ◦ ηA.

Consider the previous examples of List and Tree as functors on a category of types. One example

of a natural transformation between Tree and List is the interpretation of a polymorphic flattening

function that takes a tree (of any type) as input and produces a list containing the same data. The

naturality condition for flatten and a function JfK : JT K→ JT ′K says that

Tree0 JT K List0 JT K

Tree0 JT ′K List0 JT ′K

Tree1JfK

flattenJTK

List1JfK
flattenJT ′K

must commute, i.e., flattenJT ′K ◦ Tree1JfK = List1JfK ◦ flattenJT K. In other words, first mapping a

function over a tree and then flattening is the same as flattening the tree and then mapping the function

over the resulting list. This naturality condition is satisfied because the flattening function (natural

transformation) is defined uniformly for every type (object), i.e., it repackages the data in a tree in a

type-independent way. The naturality condition for natural transformations between functorial data

types (i.e., data types that can be interpreted as functors) can informally be stated as follows: modifying

the data in a shape-preserving way and then repackaging the data into a different shape is the same

as first repackaging the data into a different shape and then modifying the data in a shape-preserving

way.

40

The fact that polymorphic functions in a functional programming language are easily modeled

as natural transformations is part of the reason the calculus N includes a built-in type of natural

transformations.

Given functors F,G,H : C → D and two natural transformations η : G ⇒ H and δ : F ⇒ G,

we can compose η and δ by defining a natural transformation η ◦ δ where each component (η ◦ δ)X is

defined as a composition of components, i.e., (η ◦ δ)X = ηX ◦ δX . This notion of composition of natural

transformations is called vertical composition. There is another notion of composition called horizontal

composition, but we do not use horizontal composition in this thesis. We can also define an identity

natural transformation idF for any functor F where each component (idF)X is given by the identity

morphism on F0X. Using these notions of composition and identity for natural transformations, we

can define the functor category for two categories C and D, whose objects are functors from C to D.

Definition 3.1.4. Given two categories C and D, the functor category [C,D]2 is defined by the following

data:

• objects: functors from C to D

• morphisms between objects F and G: natural transformations between F and G

• composition: vertical composition of natural transformations

• identity: identity natural transformations

The fact that composition is defined componentwise for natural transformations ensures that the axioms

for identities and compositions are satisfied, since they are satisfied in the category D in which the

components of these natural transformations live.

Given functors F : C → D, G,H : D → E , and a natural transformation η : G⇒ H, we can construct

a new natural transformation ηF : G ◦ F ⇒ H ◦ F whose components are defined by (ηF)X = ηFX .

This natural transformation ηF is called the whiskering of η by F . We can also whisker in the other

direction. Given functors F : D → E , G,H : C → D and a natural transformation η : G ⇒ H, we can

construct Fη : F ◦G⇒ F ◦H whose components are defined by (Fη)X = F1(ηX).

2The notation [C,D] is somewhat nonstandard: the functor category for C and D is usually written as DC , but this
exponent notation does not translate easily to Agda syntax. Also, the notation [C,D] is used in [5] to denote a special
kind of functor category, but we are not concerned with this special class in our formalization (see the comments about
ω-cocontinuity in Chapter 4). For these reasons, we use the bracket notation [C,D] for all functor categories throughout
this thesis.

41

Another useful notion based on natural transformations is that of a natural isomorphism between

two functors:

Definition 3.1.5. Given functors F,G : C → D, a natural isomorphism between F and G is a pair

of natural transformations η : F ⇒ G and η−1 : G ⇒ F such that, for every object A : C, the

components ηA : F0A→ G0A and η−1
A : G0A→ F0A form an isomorphism, i.e., ηA ◦ η−1

A = idG0A and

η−1
A ◦ ηA = idF0A.

3.2 Category Theory in Agda

In this section we formalize the notions of categories, functors, and natural transformations in Agda.

All of these notions are already formalized in the category theory library used in this thesis3, but we

present the formalizations step-by-step here to aid with readability and keep this chapter self-contained.

3.2.1 Categories

Recall from Definition 3.1.1 that a category consists of objects, morphisms, a composition operator, and

some axioms. Recall that objects and morphisms are given as collections rather than sets, so they might

be sets, but they could also be larger collections that are not sets (e.g., the collection of all sets). To

account for this, our definition of a category will be parameterized by a universe level for the collection

of objects and a universe level for the collection of morphisms. These universe level parameters allow

users of the category theory library to specify the size of each collection when declaring a new category.

A first attempt at defining the type of categories in Agda might look like the following:

record Category0 (o ` : Level) : Set (lsuc (o t `)) where

infix 4 ⇒

infixr 9 ◦

field

Obj : Set o

⇒ : Rel Obj `

id : ∀ {A} → (A ⇒ A)

◦ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C)

3All of the Agda code in this chapter is from the agda-categories library introduced in [3].

42

This (incomplete) definition of a category is defined as a record type and takes two explicit pa-

rameters: the universe level o for the collection of objects and the universe level ` for the collection of

morphisms. The “Set (lsuc(o t `))” after the colon on the first line indicates the universe in which the

Category0 type lives, which is one level above the least upper bound4 of o and `. The next two lines

set the fixity and operator precedence of the infix operators for the type of morphisms and the type of

composition in this category.

The first field required in this definition is Obj, the type of objects, which can be any Agda type that

fits in the universe Set o determined by the o parameter. The next field ⇒ is the type of morphisms

in the category being defined. The Agda type Rel A ` is a type from the standard library with the

following definition:

Rel : ∀ {a} (A : Set a) (` : Level) → Set (a t lsuc `)

Rel A ` = A → A → Set `

That is, Rel A ` is the type of homogeneous relations on the type A. If x, y : A and R : Rel A `, then

R x y is the type of proofs that x and y are related by R. So in the definition of Category0, the type of

⇒ expands to Obj→ Obj→ Set `. So given objects A and B, A ⇒ B is the type of morphisms from

A to B.

The last two fields in the definition of Category0 are for identity morphisms and composition of

morphisms. For the id field, we must provide a function that, given any object A, produces a morphism

from A to itself. For the composition field (◦), we must provide a function that composes morphisms

of the appropriate types.

The careful reader will notice that this definition (Category0) is incomplete. In particular, this

definition of a category is missing the axioms required for identity morphisms and the composition

operator, so we will need to add additional fields to account for these axioms.

We also noted previously that the axioms for composition are given with respect to some notion

of morphism equality. Given that Agda has a built-in notion of propositional equality, it might seem

sensible to use propositional equality for comparing morphisms in all categories. But as noted in [3],

there are several issues with this. The principal issue is that in many categories (e.g., Sets), a morphism

is (some kind of) a function, and extra steps and axioms are needed in Agda to reason about equality of

4The function lsuc takes a universe level and returns the next universe level in the hierarchy. The function t takes
two universe levels and returns the least upper bound of the two universe levels, i.e., the smallest universe level that is
greater than or equal to the input universe levels.

43

functions in an extensional way, as we would like to do in some categories. For example, in the category

Sets, we want to consider two functions to be equal iff they are equal on all inputs. This notion of

function equality is called extensional equality. However, the default notion (propositional equality) of

equality in Agda, written f ≡ g, compares f and g for intensional equality, which means f and g must be

textually identical functions for the type f ≡ g to be inhabited. Another issue with using propositional

equality to compare morphisms in all categories is that we may want to use different notions of equality

in different categories. We may even want to define two categories that are the same except in their

notion of morphism equality.

For these reasons, the notion of equality for morphisms must be given along with the other fields

when declaring a new category. We will also add a third universe level parameter to the definition

of a category that is used to specify the universe in which proofs of morphism equality should live.

This notion of morphism equality is formalized in Agda as an equivalence relation on the type of

morphisms. An equivalence relation is a relation that is reflexive, transitive, and symmetric. So in

addition to providing the relation used for morphism equality, users of the category theory library must

also provide a proof that this relation is an equivalence relation when declaring a new category. Given a

notion of morphism equivalence, the library definition also adds fields to account for the axioms about

identity morphisms and composition. The full definition of a category is given in Agda as:

record Category (o ` e : Level) : Set (lsuc (o t ` t e)) where

infix 4 ≈ ⇒

infixr 9 ◦

field

Obj : Set o

⇒ : Rel Obj `

id : ∀ {A} → (A ⇒ A)

◦ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C)

≈ : ∀ {A B} → Rel (A ⇒ B) e

assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → (h ◦ g) ◦ f ≈ h ◦ (g ◦ f)

sym-assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D} → h ◦ (g ◦ f) ≈ (h ◦ g) ◦ f

identityl : ∀ {A B} {f : A ⇒ B} → id ◦ f ≈ f

44

identityr : ∀ {A B} {f : A ⇒ B} → f ◦ id ≈ f

identity² : ∀ {A} → id ◦ id {A} ≈ id {A}

equiv : ∀ {A B} → IsEquivalence (≈ {A} {B})

◦-resp-≈ : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B} → f ≈ h → g ≈ i → f ◦ g ≈ h ◦ i

Notice the record type declaration includes a new universe parameter, e, for the universe level of

proofs of morphisms equivalence. This definition also includes several additional fields that were not

present in the previous definition Category0. The first is ≈ , the type of morphism equivalence. By

the definition of Rel, the type of ≈ expands to (∀{A B} → (A⇒ B)→ (A⇒ B)→ Set e), so given

morphisms f, g : A⇒ B, f ≈ g is the type of proofs that f and g are equivalent morphisms.

The assoc and sym-assoc fields express that composition of morphisms is associative. Although

sym-assoc is somewhat redundant, it is included because the library authors assert that this redundancy

makes other concepts easier to express in the library. The next three identity fields express some axioms

about composition of identity morphisms. The first two identity axioms, identityl and identityr, are

standard, and identity2, although somewhat redundant, is included as a design decision, similarly to

sym-assoc.

The equiv field expresses that the relation given for morphism equality is indeed an equivalence

relation. The type IsEquivalence is itself a record type with three fields. To provide a term of type

IsEquivalence ≈ for some relation ≈, we must provide proofs that ≈ is reflexive, symmetric, and tran-

sitive:

refl : ∀ {f : A ⇒ B} → f ≈ f

sym : ∀ {f g : A ⇒ B} → f ≈ g → g ≈ f

trans : ∀ {f g h : A ⇒ B} → f ≈ g → g ≈ h → f ≈ h

The last field in the definition of a category is ◦-resp-≈, which expresses that morphism composition

respects the equivalence relation given for morphism equality. That is, if two pairs of morphisms are

equivalent, then their compositions should be equivalent. This axiom is non-standard and is a result

of the design decision to use a local (user-defined) version of morphism equality in the definition of a

category.

45

3.2.2 Examples of Categories in Agda

As a first example, let us consider the definition of Sets in Agda:

Sets : Category (lsuc lzero) lzero lzero

Sets = record

{ Obj = Set

; ⇒ = λ A B → (A → B)

; ≈ = λ f g → f ≡-ext g

; id = λ x → x

; ◦ = λ f g x → f (g x)

; assoc = ≡.refl

; sym-assoc = ≡.refl

; identityl = ≡.refl

; identityr = ≡.refl

; identity² = ≡.refl

; equiv = record

{ refl = ≡.refl

; sym = λ eq → ≡.sym eq

; trans = λ eq1 eq2 → ≡.trans eq1 eq2

}

; ◦-resp-≈ = resp

}

where resp : ∀ {A B C : Set} {f h : B → C} {g i : A → B}

→ ({y : B} → f y ≡ h y)

→ ({x : A} → g x ≡ i x)

→ {x : A} → f (g x) ≡ h (i x)

resp {h = h} f≡h g≡i {x} = ≡.trans f≡h (≡.cong h g≡i)

(7)

The collection of objects is the base universe Set, which is really shorthand for Set lzero, where lzero

is the base universe level. Since Set is an element of the universe Set (lsuc lzero) (also written Set1), the

first universe level parameter to Category in the type of Sets is lsuc lzero. The collection of morphisms

46

between objects A and B is the set of functions A→ B, and since A→ B : Set, the second universe level

parameter is lzero. The type of morphism equality is defined by an auxiliary function

≡-ext : ∀ {`} {A B : Set `} → (f g : A → B) → Set `

f ≡-ext g = ∀ {x} → f x ≡ g x

that asserts two functions are extensionally equal, i.e., for every element x in type A, f x is equal to g x.

The identity morphism for a set A is the identity function on A, and composition of morphisms is given

by function composition. Since the two compositions (h ◦ g) ◦ f and h ◦ (g ◦ f) in Sets both compute to

λx→ h(g(fx)), i.e., the compositions are definitionally equal, the associativity proofs for this category

are trivial and can be proved using ≡.refl. The same reasoning applies to the identity proofs, since, for

any function f, the composition of f with the identity function is definitionally equal to f. For example,

f ◦ id = λx→ f ((λy→ y) x) = λx→ f x = f. To satisfy the ≡ field, we must give a proof of

{A B : Set} → IsEquivalence (λ (f g : A → B) → f ≡-ext g)

to show that ≡-ext is an equivalence relation. For this we must produce a term of the form

record

{ refl = {!!} -- Goal: {f : A → B} {x : A} → f x ≡ f x

; sym = {!!} -- Goal: {f g : A → B} → f ≡-ext g → g ≡-ext f

; trans = {!!} -- Goal: {f g h : A → B} → f ≡-ext g → g ≡-ext h → f ≡-ext h

}which we define in (7) using the ≡.refl constructor of the propositional equality type and the functions

sym : ∀ {a : Level} {A : Set a} {x y : A} → x ≡ y → y ≡ x

sym ≡.refl = ≡.refl

trans : ∀ {a : Level} {A : Set a} {x y z : A} → x ≡ y → y ≡ z → x ≡ z

trans ≡.refl y≡z = y≡z

for symmetry and transitivity of ≡ from the standard library. Note that we use the qualified names

of refl, sym, and trans in (7), i.e., we prepend each definition with the name of its parent module and a

period. This is enabled by the import statement

import Relation.Binary.PropositionalEquality as ≡

that imports the module for propositional equality from the standard library and renames the module to

≡. Using these qualified names makes it easier to distinguish between the refl, sym, and trans functions

47

associated with the propositional equality type and the refl, sym, and trans fields of the IsEquivalence

type.

Let us also consider the definition of a product category in Agda:

Product : ∀ {o ` e o′ `′ e′ : Level}

→ (C1 : Category o ` e) (C2 : Category o′ `′ e′)

→ Category (o t o′) (` t `′) (e t e′)

Product C1 C2 = record

{ Obj = C1.Obj ×’ C2.Obj

; ⇒ = λ { (A1 , A2) (B1 , B2) → (A1 C1.⇒ B1) ×’ (A2 C2.⇒ B2) }

; ≈ = λ { (f1 , f2) (g1 , g2) → (f1 C1.≈ g1) ×’ (f2 C2.≈ g2) }

; ◦ = λ { (f1 , f2) (g1 , g2) → (f1 C1.◦ g1) , (f2 C2.◦ g2) }

; id = C1.id , C2.id

; assoc = C1.assoc , C2.assoc

; sym-assoc = C1.sym-assoc , C2.sym-assoc

; identityl = C1.identityl , C2.identityl

; identityr = C1.identityr , C2.identityr

; identity² = C1.identity² , C2.identity²

; equiv = record

{ refl = C1.Equiv.refl , C2.Equiv.refl

; sym = λ { (f1≈g1 , f2≈g2) → (C1.Equiv.sym f1≈g1) , (C2.Equiv.sym f2≈g2) }

; trans = λ { (f1≈g1 , f2≈g2) (g1≈h1 , g2≈h2)

→ (C1.Equiv.trans f1≈g1 g1≈h1) , (C2.Equiv.trans f2≈g2 g2≈h2) }

}

; ◦-resp-≈ =

λ { (f1≈h1 , f2≈h2) (g1≈i1 , g2≈i2) → (C1.◦-resp-≈ f1≈h1 g1≈i1) , (C2.◦-resp-≈ f2≈h2 g2≈i2) }

}

where module C1 = Category C1

module C2 = Category C2

This definition of Product takes two arbitrary categories C1 and C2 with potentially different universe

levels and returns the product category Product C1 C2. An object of the product category is a pair

48

of objects (A1, A2) where A1 is an object of C1 and A2 is an object of C2. A morphism from (A1,

A2) to (B1, B2) is a pair of morphisms (f1, f2) where f1 : A1→ B1 and f2 : A2→ B2. Equality and

composition of morphisms are defined componentwise, so all of the remaining fields can be defined

using the corresponding fields from C1 and C2. The syntax λ{x→ ...} allows us to pattern match on

the argument x, and the module statements module C1 = Category C1 and module C2 = Category C2

allow us to refer to the fields of C1 and C2 using their qualified names.

3.2.3 Functors

The definition of a functor in Agda is also given as a record type. Recall from Definition 3.1.2 that a

functor consists of a mapping of objects, a mapping of morphisms, and some axioms. These data are

captured by the following record type:

record Functor {o ` e o′ `′ e′ : Level}

(C : Category o ` e)

(D : Category o′ `′ e′) : Set (o t ` t e t o′ t `′ t e′) where

private module C = Category C

private module D = Category D

field

F0 : C.Obj → D.Obj

F1 : ∀ {A B} (f : C [A , B]) → D [F0 A , F0 B]

identity : ∀ {A} → D [F1 (C.id {A}) ≈ D.id]

homomorphism : ∀ {X Y Z} {f : C [X , Y]} {g : C [Y , Z]} →

D [F1 (C [g ◦ f]) ≈ D [F1 g ◦ F1 f]]

F-resp-≈ : ∀ {A B} {f g : C [A , B]} → C [f ≈ g] → D [F1 f ≈ F1 g]

First notice that the universe level parameters for the Functor type are implicit rather than explicit.

There are also two groups of universe level parameters since C and D may differ in these parameters.

The F0 and F1 fields are the functor’s actions on objects and morphisms, respectively. The Agda syntax

C[A,B] is shorthand for the type of morphisms from A to B in the category C. The identity field expresses

that F1 must preserve identity morphisms. The syntax D[f ≈ g] is shorthand for the type of morphism

equality in the category D. The homomorphism field expresses that F1 must preserve compositions. The

49

syntax D[g ◦ f] is shorthand for the composition of g and f in the category D. The last field, F-resp-≈,

expresses that F1 must preserve morphism equivalence. Similar to the ◦-resp-≈ field in the definition of

a category, this axiom is non-standard, but it is necessary because each category comes with its own

notion of morphism equivalence.

To construct a value of type Functor C D for some categories C and D, we must provide a mapping

of objects, a mapping of morphisms, and three proofs that these mappings interact with composition

and morphism equality as expected.

3.2.4 Natural Transformations

Finally, we can define the type of natural transformations in Agda. The type of natural transformations

is also given as a record type. Recall from Definition 3.1.3 that a natural transformation consists of a

collection of components and a naturality (commuting square) condition. These data are captured by

the following definition in Agda:

record NaturalTransformation {o ` e o′ `′ e′ : Level} {C : Category o ` e}

{D : Category o′ `′ e′}

(F G : Functor C D) : Set (o t ` t `′ t e′) where

private

module F = Functor F

module G = Functor G

open F using (F0; F1)

open Category D

field

η : ∀ X → D [F0 X , G.F0 X]

commute : ∀ {X Y} (f : C [X , Y]) → η Y ◦ F1 f ≈ G.F1 f ◦ η X

sym-commute : ∀ {X Y} (f : C [X , Y]) → G.F1 f ◦ η X ≈ η Y ◦ F1 f

Again, the universe level parameters are implicit, along with the category parameters C and D.

The module and open statements bring different definitions into scope to make the definition of natural

transformations more concise. In particular, open F brings F0 and F1 into scope so we can write F0

rather than F.F0. The open Category D statement brings all of the fields of D into scope, e.g., ◦ and

50

≈ . The first field, η, is the collection of components of the natural transformation, indexed by the

objects of C. The commute and sym-commute fields require the user to give a proof of a commuting

square for every morphism in C. Similar to sym-assoc from the definition of Category, the redundancy

of sym-commute is a design decision by the library authors.

51

Chapter 4

Set Semantics of Types

In this chapter we present the set semantics from [5] for the calculus N and formalize this semantics

in Agda1. To interpret the variables appearing in a type, we introduce the notion of set environments.

We show that set environments form a category and then interpret the types of N as functors from the

category of set environments to the category of sets.

Some of the types from N (e.g., the product type) can be interpreted using standard categorical

constructs, some of which have already been introduced (e.g., the product functor for sets). The Nat

type is interpreted as a set of natural transformations that satisfy an additional property needed to

ensure parametricity. To interpret a µ-type, we first interpret its body as a higher-order functor H and

then interpret the µ-type as the fixpoint µH of this higher-order functor, applied to the interpretation of

the arguments of the µ-type. Informally, the fixpoint is obtained by repeatedly applying the higher-order

functor H until this process converges, i.e., until we reach the fixpont µH, which satisfies µH ∼= H (µH).

It is worth noting that in [5], the types of N are interpreted specifically as ω-cocontinuous functors

on locally finitely presentable categories. Local finite presentability and ω-cocontinuity are technical

properties of categories and functors, respectively, that ensure the fixpoints used to interpret µ-types

exist. In this formalization, we use a concrete construction (a data type in Agda) to interpret µ-types,

and so we do not need to formalize ω-cocontinuity and local finite presentability. For these reasons, we

make no further mention of ω-cocontinuity and local finite presentability in this thesis.

1Unless otherwise specified, all of the Agda code in this chapter is from our implementation.

52

4.1 Set Environments

A type is interpreted with respect to an environment that assigns meaning to each of the variables in

the type.

Definition 4.1.1. A set environment maps each variable of arity k to a a functor from the k-ary

product category Setsk to Sets. A morphism of set environments f : ρ → ρ′ only exists when ρ

and ρ′ are equal on all non-functorial variables. A morphism of set environments f : ρ → ρ′ sends

each non-functorial variable ψk to the identity natural transformation on ρψk = ρ′ψk and sends each

functorial variable ϕk to a natural transformation from the functor ρϕk : Setsk → Sets to the functor

ρ′ϕk : Setsk → Sets. Composition of morphisms is given pointwise, i.e., (g◦f)ϕk = (gϕk)◦(fϕk), where

the second composition is a (vertical) composition of natural transformations. An identity morphism of

set environments maps a set environment ρ to itself by sending every variable ϕk to the identity natural

transformation on ρϕk. These data yield a category of set environments.

Note that a 0-ary functor of sets, i.e, a functor of type Sets0 → Sets, is equivalent to a set, because

Sets0 is a category with a single object (the empty tuple of sets) and a single identity morphism. Thus

a functor from Sets0 “picks out” a set X by sending the single object of Sets0 to X, and it sends the

single morphism of Sets0 to the identity morphism idX . By the same reasoning, a natural transformation

between functors of type Sets0 → Sets is just a function between sets. Thus, a set environment maps

each variable α of arity 0 to a set, and a morphism f : ρ→ ρ′ maps α to a function f α : ρα→ ρ′α.

Definition 4.1.2. Given a set environment ρ, a functorial variable of arity k, and a functor F : Setsk →

Sets, we define the environment extension of ρ as ρ[ϕ := F] = ρ′ where ρ′ψ = F if ψ = ϕ and ρ′ψ = ρψ

otherwise. Environment extension can also be defined for a vector of variables ϕ and a vector of functors

F of the appropriate arities and types. It is denoted ρ[ϕ := F] and is defined by induction on the (equal)

lengths of the vectors ϕ and F .

This notion of environment extension can be extended to morphisms of environments:

Definition 4.1.3. Given a functorial variable ϕ, set environments ρ and ρ′, a morphism f : ρ → ρ′,

functors F,G : Setsk → Sets, and a natural transformation η : F ⇒ G, we define the extension of

f as f [ϕ := η] = f ′ where f ′ψ = η if ψ = ϕ and f ′ψ = fψ otherwise. Environment extension for

morphisms can also be defined for a vector of variables ϕ and a vector of natural transformations η of

53

the appropriate arities and types. It is denoted f [ϕ := η] and is defined by induction on the (equal)

lengths of the vectors ϕ and η.

4.2 Set Environments in Agda

To formalize the category of set environments in Agda, we must first define the generalized product

category. We define a function Catˆ that takes a natural number k and returns the k-ary product

category for any category C:

module VecCat {o ` e : Level} (C : Category o ` e) where

private module C = Category C

foreach2 : ∀ {`} {r} {k : N} {A B : Set `}

→ (P : A → B → Set r)

→ Vec A k → Vec B k → Set r

componentwise-Vec-≈ : ∀ {k} {Xs Ys : Vec C.Obj k} → (fs gs : foreach2 C. ⇒ Xs Ys) → Set e

compose-Vec-morphs : ∀ {k : N} {Xs Ys Zs : Vec C.Obj k}

→ foreach2 C. ⇒ Ys Zs → foreach2 C. ⇒ Xs Ys

→ foreach2 C. ⇒ Xs Zs

idVec : ∀ {k : N} → (Cs : Vec C.Obj k) → foreach2 C. ⇒ Cs Cs

Catˆ : N → Category o ` e

Catˆ k = record

{ Obj = Vec C.Obj k

; ⇒ = λ Xs Ys → foreach2 C. ⇒ Xs Ys

; ≈ = λ fs gs → componentwise-Vec-≈ fs gs

; id = λ {Xs} → idVec Xs

; ◦ = λ fs gs → compose-Vec-morphs fs gs

...

}

54

We define this function Catˆ in a module2 parameterized by an arbitrary category C, since the k-ary

product category can be defined for any category. An object of Catˆ k is a length k vector of objects from

C. A morphism in Catˆ k from Xs to Ys is a k-tuple of functions fs = (f1 : Xs1 → Ys1, ..., fk : Xsk → Ysk),

formalized in terms of the function foreach2. The function foreach2 is the analogue of foreach for a binary

relation P : A→ B→ Set r, so a term of type foreach2 P Xs Ys is a k-tuple (p1, .., pk) where pi : P Xsi Ysi.

Morphism equality and composition are defined compontentwise, using the corresponding fields from

C on each pair of morphisms in the k-tuples fs and gs. Identity morphisms are defined as k-tuples of

identity morphisms in C. We elide the remaining fields3 because they all have the form of applying the

corresponding fields of C componentwise to vectors of objects and k-tuples of morphisms. Using the

definition of Catˆ k , we define the k-ary product of Sets as the instance of Catˆ k with C instantiated

to Sets:

Setsˆ : N → Category (lsuc lzero) lzero lzero

Setsˆ k = Catˆ Sets k

Now that we have defined Setsˆ k, we can define set environments as a record type:

SetEnvTC : Set1

SetEnvTC = ∀ {k : N} → TCVar k → Functor (Setsˆ k) Sets

SetEnvFV : Set1

SetEnvFV = ∀ {k : N} → FVar k → Functor (Setsˆ k) Sets

record SetEnv : Set1 where

constructor SetEnv[,]

field

tc : SetEnvTC

fv : SetEnvFV

A set environment consists of two fields: a mapping for type constructor variables, tc, and a mapping

for functorial variables, fv. The mapping for type constructor (resp., functorial) variables sends a type

constructor (resp., functorial) variable of arity k to a functor from Setsˆ k to Sets, as desired.

2We only give the types of the functions defined in this module and elide their definitions. The definitions are all of
the same form and are given by induction on the lengths of their input vectors.

3We use an ellipsis “...” in the definition of Catˆk to indicate that the record has additional fields in the code, but
that we are not showing them here. We use this notation throughout this thesis.

55

Morphisms of set environments are also defined as a record type:

record SetEnvMorph (ρ ρ’ : SetEnv) : Set1 where

constructor SetEnvM[,]

field

eqTC : ρ ≡TC ρ’

fv : ∀ {k : N} → (ϕ : FVar k) → NaturalTransformation (SetEnv.fv ρ ϕ) (SetEnv.fv ρ’ ϕ)

To define a morphism of set environments from ρ to ρ’, we need a proof eqTC that the tc fields of ρ

and ρ’ are equal. This proof of equality is defined in terms of the function ≡TC :

≡TC : ∀ (ρ ρ’ : SetEnv) → Set1

ρ ≡TC ρ’ = (λ {k} → SetEnv.tc ρ {k}) ≡ (λ {k} → SetEnv.tc ρ’ {k})

We might expect the definition of ≡TC to simply be SetEnv.tc ρ ≡ SetEnv.tc ρ’, but we actually must

use the expanded version because of the implicit argument k in the type of the tc field. Normally in

functional programming languages, the functions λx→ f x and f are considered identical. This property

is called eta-equality, and, indeed, eta-equality holds in Agda for functions and their explicit arguments.

However, eta-equality does not hold for implicit arguments because if we just write f for some function

f with implicit arguments, Agda will try to infer the implicit arguments. For this reason, we must

write the fully expanded λ{k} → SetEnv.tc ρ {k} in the definition of ≡TC . The other field fv maps

each functorial variable of arity k to a natural transformation from SetEnv.fv ρϕ to SetEnv.fv ρ’ϕ. The

identity natural transformation associated to a type constructor variable ψ can be defined by using the

equality proof eqTC to deduce that SetEnv.tc ρψ ≡ SetEnv.tc ρ’ψ. Composition of morphisms of set

environments is defined by:

◦SetEnv : ∀ {ρ ρ’ ρ”} → SetEnvMorph ρ’ ρ” → SetEnvMorph ρ ρ’ → SetEnvMorph ρ ρ”

g ◦SetEnv f = record { eqTC = ≡.trans (SetEnvMorph.eqTC f) (SetEnvMorph.eqTC g)

; fv = λ {k} ϕ → (SetEnvMorph.fv g ϕ) ◦v (SetEnvMorph.fv f ϕ) }

To define the composite morphism g ◦ SetEnv f from ρ to ρ”, we compose the equality proofs using

transitivity of equality (≡.trans). To compose the natural transformations associated with each func-

torial variable ϕ, we use the composition function for natural transformations from the agda-categories

library:

56

◦v : ∀ {o ` e o’ `’ e’ : Level} {C : Category o ` e} {D : Category o’ `’ e’}

→ {F G H : Functor C D}

→ NaturalTransformation G H → NaturalTransformation F G

→ NaturalTransformation F H

The function ◦v implements vertical composition of natural transformations as it was defined in Section

3.1.5. An identity morphism of set environments is defined by:

idSetEnv : ∀ {ρ : SetEnv} → SetEnvMorph ρ ρ

idSetEnv = record { eqTC = ≡.refl ; fv = λ → idnat }

The equality proof for the eqTC field is given by the reflexivity proof ≡.refl, and the fv field sends

every functorial variable to the appropriate identity natural transformation, which is defined in the

agda-categories library as:

idnat : ∀ {F : Functor C D} → NaturalTransformation F F

Given these definitions, we can define the category SetEnvCat of set environments in Agda:

SetEnvCat : Category (lsuc lzero) (lsuc lzero) (lsuc lzero)

SetEnvCat = record

{ Obj = SetEnv

; ⇒ = SetEnvMorph

; ≈ = λ f g → ∀ {k : N} {ϕ : FVar k}

→ ∀ {Xs : Vec Set k}

→ NaturalTransformation.η (SetEnvMorph.fv f ϕ) Xs

≈ NaturalTransformation.η (SetEnvMorph.fv g ϕ) Xs

; id = idSetEnv

; ◦ = ◦SetEnv

...

}

where open Category (Sets) using (≈)

An object of SetEnvCat is an element of SetEnv, morphisms are given by SetEnvMorph, and identity

and composition are given by idSetEnv and ◦SetEnv , respectively. Two morphisms f and g are con-

57

sidered equivalent, written f ≈ g, if, for every functorial variable ϕ of arity k and vector of sets Xs, the

components

NaturalTransformation.η (SetEnvMorph.fv f ϕ) Xs

and

NaturalTransformation.η (SetEnvMorph.fv gϕ) Xs

are equivalent in Sets. The remaining fields for associativity, etc., are straightforward to define, since

composition and equality of morphisms are defined componentwise, and the components of the natural

transformations here are morphisms in Sets.

The definition of environment extension in Agda is a direct translation of Definition 4.1.2:

extendfv : ∀ {k} → SetEnvFV

→ FVar k → Functor (Setsˆ k) (Sets)

→ SetEnvFV

extendfv fv (ϕ ˆF k) F (ψ ˆF j) with eqNat k j | ϕ ?
= ψ

... | yes ≡.refl | yes ≡.refl = F

... | | = fv (ψ ˆF j)

[:fv=] : ∀ {k : N} → SetEnv → FVar k → Functor (Setsˆ k) Sets → SetEnv

ρ [ϕ :fv= F] = record { tc = SetEnv.tc ρ ; fv = extendfv (SetEnv.fv ρ) ϕ F }

The tc field of the environment ρ is unaffected, and the fv field is defined in terms of extendfv. Recall

that SetEnvFV is a type synonym for:

∀{k : N} → FVar k→ Functor (Setsˆ k) Sets

The extendfv function is defined by case analysis. It says that, when applied to ψ ˆF j, the extension

of fv with ϕ ˆF k and F gives F if ϕ ˆF k and ψ ˆF j are equal and fv (ψ ˆF j) otherwise. We define the

environment extension function for vectors of variables as:

[:fvs=] : ∀ {n k : N} → SetEnv → Vec (FVar k) n → Vec (Functor (Setsˆ k) (Sets)) n → SetEnv

ρ [Vec.[] :fvs= Vec.[]] = ρ

ρ [ϕ :: ϕs :fvs= F :: Fs] = record { tc = SetEnv.tc ρ ; fv = extendfv (SetEnv.fv (ρ [ϕs :fvs= Fs])) ϕ F }

58

The base case for an empty vector leaves the environment unchanged. The inductive case is defined by

recursively extending ρ with ϕs and Fs and then extending the functorial part of the recursive result

with ϕ and F. The tc field is not modified, since no type constructor variables are involved here. Note

that we could use the following, slightly more concise definition:

[:fvs=]’ : ∀ {n k : N} → SetEnv → Vec (FVar k) n → Vec (Functor (Setsˆ k) (Sets)) n → SetEnv

ρ [Vec.[] :fvs= Vec.[]]’ = ρ

ρ [ϕ :: ϕs :fvs= F :: Fs]’ = (ρ [ϕ :fv= F]) [ϕs :fvs= Fs]’

But with this version, it requires extra steps to show that the tc field of the resulting environment

is unchanged, whereas this fact is immediate using the former definition. For this reason, we use the

former definition.

Environment extension for morphisms of environments is also defined by case analysis on variable

equality, and its Agda definition is a direction translation of Definition 4.1.3:

extendfv-morph : ∀ {k} (ϕ : FVar k)

{F G : Functor (Setsˆ k) Sets}

→ (ρ ρ’ : SetEnv)

→ SetEnvMorph ρ ρ’

→ NaturalTransformation F G

→ SetEnvMorph (ρ [ϕ :fv= F])

(ρ’ [ϕ :fv= G])

extendfv-morph (ϕ ˆF k) {F} {G} ρ ρ’ f η = record { eqTC = SetEnvMorph.eqTC f ; fv = fvmap }

where fvmap : ∀ {j} (ψ : FVar j)

→ NaturalTransformation (SetEnv.fv (ρ [(ϕ ˆF k) :fv= F]) ψ)

(SetEnv.fv (ρ’ [(ϕ ˆF k) :fv= G]) ψ)

fvmap (ψ ˆF j) with eqNat k j | ϕ ?
= ψ

... | yes ≡.refl | yes ≡.refl = η

... | yes ≡.refl | no = SetEnvMorph.fv f (ψ ˆF j)

... | no | = SetEnvMorph.fv f (ψ ˆF j)

The equality proof for the eqTC field is just given by the tc field of f, since the definition of ρ[ϕ : fv = F]

leaves the tc field unchanged. The fv field is given by fvmap, which sends a variable (ψ ˆF j) to η if

(ϕ ˆF k) and (ψ ˆF j) are equal and sends (ψ ˆF j) to SetEnvMorph.fv f (ψ ˆF j) otherwise. The analogous

59

function for vectors of variables is defined by:

extendfv-morph-vec : ∀ {k n } (ϕs : Vec (FVar k) n)

(Fs Gs : Vec (Functor (Setsˆ k) Sets) n)

→ (ρ ρ’ : SetEnv)

→ SetEnvMorph ρ ρ’

→ foreach2 (NaturalTransformation) Fs Gs

→ SetEnvMorph (ρ [ϕs :fvs= Fs])

(ρ’ [ϕs :fvs= Gs])

extendfv-morph-vec [] [] [] ρ ρ’ f bigtt = f

extendfv-morph-vec (ϕ :: ϕs) (F :: Fs) (G :: Gs) ρ ρ’ f (η , ηs) =

record { eqTC = SetEnvMorph.eqTC f

; fv = SetEnvMorph.fv

(extendfv-morph ϕ (ρ [ϕs :fvs= Fs]) (ρ’ [ϕs :fvs= Gs])

(extendfv-morph-vec ϕs Fs Gs ρ ρ’ f ηs) η) }

This function is defined by pattern matching on the the input vectors. The collection of natural

transformations ηs must be given in terms of foreach2 rather than Vec to ensure that each natural

transformation has the correct type, i.e., that ηi is a natural transformation from Fsi to Gsi. Indeed,

we must use foreach2 here because the Vec type does not allow us to specify that each element in the

vector should have a different type.

4.3 Interpreting Types as Sets

In this section, we present the set semantics of N ’s types as it appears in [5]. It should be noted at this

point that the set semantics of types is actually defined mutually with the relation semantics of types.

Specifically, the relational interpretation depends on the set interpretation (in many places), and the

set interpretation of Nat types in Definition 4.3.1 depends on the relational interpretation of Nat types.

We show where this mutual dependence appears in this section, but we skip formalizing it in Agda until

Section 8.2 after we have defined the relation semantics of types in Chapter 7.

Given a non-functorial context Γ, a functorial context Φ, and a typing judgment Γ; Φ ` F , we define

set interpretation of Γ; Φ ` F as a functor from the category of set environments to the category of sets.

60

Definition 4.3.1. Given a typing judgment Γ; Φ ` F , we define its set interpretation JΓ; Φ ` F KSet

as a functor from the category of set environments to the category of sets. The action of the set

interpretation on objects is defined (in non-Agda syntax) by:

JΓ; Φ ` 0KSetρ = 0

JΓ; Φ ` 1KSetρ = 1

JΓ; ∅ ` Natα F GKSetρ = {η : λA. JΓ;α ` F KSetρ[α := A]⇒ λA. JΓ;α ` GKSetρ[α := A]

| ∀A,B : Set.∀R : Rel(A,B).

(ηA, ηB) : JΓ;α ` F KRelEqρ[α := R]→ JΓ;α ` GKRelEqρ[α := R]}

JΓ; Φ ` ϕF KSetρ = (ρϕ) JΓ; Φ ` F KSetρ

JΓ; Φ ` F +GKSetρ = JΓ; Φ ` F KSetρ+ JΓ; Φ ` GKSetρ

JΓ; Φ ` F ×GKSetρ = JΓ; Φ ` F KSetρ× JΓ; Φ ` GKSetρ

JΓ; Φ ` (µϕ.λα.H)GKSetρ = (µT Set
H,ρ)JΓ; Φ ` GKSetρ

where T Set
H,ρ F = λA.JΓ;ϕ, α ` HKSetρ[ϕ := F][α := A]

and T Set
H,ρ η = λA.JΓ;ϕ, α ` HKSetidρ[ϕ := η][α := idA]

The types 0 and 1 are interpreted as the empty set and singleton set, respectively. The Nat type is

interpreted as the set of natural transformations from

λA. JΓ;α ` F KSetρ[α := A]

to

λA. JΓ;α ` GKSetρ[α := A]

such that, for every vector of relations R : Rel(A,B), the components of η at A and B give a morphism

of relations from JΓ;α ` F KRelEqρ[α := R] to JΓ;α ` GKRelEqρ[α := R]. A morphism of relations from

R : Rel(A,B) to S : Rel(C,D) is a pair of functions A morphism of relations from R : Rel(A,B) to

S : Rel(C,D) is a pair of functions (f1 : A → C, f2 : B → D) such that, for every pair (x, y) related

in R, the pair (f1x, f2 y) is related in S. In other words, f1 and f2 must preserve related elements.

Therefore, the requirement for Nat types expresses that ηA and ηB must preserve related elements.

61

This restriction on the set interpretation of Nat types is required to ensure that the Identity Extension

Lemma holds for N . The set interpretation of type application is given by applying the functor ρϕ to

the vector of sets JΓ; Φ ` F KSetρ given by interpreting the the arguments of ϕ. The set interpretation of

a sum type is the sum (disjoint union) {inl x |x ∈ JΓ; Φ ` F KSetρ}∪{inr x |x ∈ JΓ; Φ ` GKSetρ}. The set

interpretation of a product type is the cartesian product {(x, y) |x ∈ JΓ; Φ ` F KSetρ, y ∈ JΓ; Φ ` GKSetρ}.

To interpret a µ-type, we first interpret its body Γ;ϕ, α ` H and use environment extension to get

a higher-order functor T Set
H,ρ : [Setsk, Sets] → [Setsk, Sets]. That is, T Set

H,ρ is a functor whose action on

objects takes a functor F : Setsk → Sets and returns the functor:

λA.JΓ;ϕ, α ` HKSetρ[ϕ := F][α := A]

The action of T Set
H,ρ on morphisms takes a natural transformation η : F ⇒ G and returns the natural

transformation:

λA.JΓ;ϕ, α ` HKSetidρ[ϕ := η][α := idA]

of type

λA.JΓ;ϕ, α ` HKSetρ[ϕ := F][α := A]⇒ λA.JΓ;ϕ, α ` HKSetρ[ϕ := G][α := A]

Given this higher-order functor T Set
H,ρ, we can take its fixpoint µT Set

H,ρ. Intuitively, the fixpoint of a higher-

order functor T : [Setsk, Sets]→ [Setsk, Sets] can be thought of as given by a repeated application of T ,

starting with the constant functor K0 : Setsk → Sets that maps every object to the empty set 0 and

maps every morphism to id0:

K0 T K0 T (T K0) ... µT ∼= T (µT)

The fixpoint µT is obtained when this repeated application converges, meaning that applying T to µT

gives a functor that is isomorphic to µT itself. As an example, let T be the underlying (higher-order)

functor for the list type, i.e., T F X = 1 + X × F X. Then µT = List is the interpretation of the list

type. If we apply T to List , we get

T (List)X = 1 +X × List X

Thus, an element of T (List)X is either the single element of 1 (representing the empty list) or an

62

element of X paired with a list of elements of X. This is precisely how the elements of List X are

defined, and the isomorphism between T (µT) and µT is a consequence of the fixpoint computation

converging.

Such fixpoints do not always exist for arbitrary functors, but the category of sets and the functors

interpreting our types have sufficient structure for these fixpoints to exist in our setting. We can

also take fixpoints of higher-order natural transformations [6]. That is, given higher-order functors

T, T ′ : [Setsk, Sets]→ [Setsk, Sets] and a higher-order natural transformation η : T ⇒ T ′, there exists a

natural transformation µη : µT ⇒ µT ′.

After taking the fixpoint of T Set
H,ρ to get µT Set

H,ρ : Setsk → Sets, to interpret the type (µϕk.λα0. F)G

we apply µT Set
H,ρ to the vector of sets JΓ; Φ ` GKSetρ given by interpreting the arguments G.

The functor T Set
H,ρ : [Setsk, Sets] → [Setsk, Sets] can be extended to a functor T Set

H : SetEnvCat →

[[Setsk, Sets], [Setsk, Sets]] whose action on an object ρ gives T Set
H,ρ. The action of T Set

H on a morphism

f : ρ→ ρ′ gives the higher-order natural transformation T Set
H,f : T Set

H,ρ ⇒ T Set
H,ρ′ whose action on F : Setk →

Set is the natural transformation T Set
H,f F : T Set

H,ρ F ⇒ T Set
H,ρ′ F whose component at A is (T Set

H,f F)A =

JΓ;ϕ, α ` HKSetf [ϕ := idF][α := idA].

4.4 Interpreting Types as Sets in Agda

The set interpretation of types is defined in Agda as the function SetSem:

SetSem : ∀ {Γ : TCCtx} → {Φ : FunCtx} → {F : TypeExpr}

→ Γ o Φ ` F

→ Functor SetEnvCat Sets

The set interpretation function SetSem takes a type F and a typing judgment Γ o Φ ` F and returns a

functor from the category of set environments to the category of sets. It is defined by induction on the

structure of the type formation rules, just as in Definition 4.3.1. We also have a function for interpreting

vectors of type expressions and their typing judgments:

SetSemVec : ∀ {k : N} {Γ : TCCtx} {Φ : FunCtx}

→ {Fs : Vec TypeExpr k}

→ foreach (λ F → Γ o Φ ` F) Fs

→ Functor SetEnvCat (Setsˆ k)

63

SetSem and SetSemVec are defined by mutual induction, where SetSemVec applies SetSem to each type

(and its typing judgment) in a vector of types.

The set interpretations for 0-I and 1-I are defined as constant functors, using the ConstF construction

from the agda-categories library:

SetSem 0-I = ConstF ⊥

SetSem 1-I = ConstF >

ConstF : ∀ {o ` e o’ `’ e’ : Level}

→ {C : Category o ` e} {D : Category o’ `’ e’}

→ (d : Category.Obj D) → Functor C D

As described in Section 3.1.4, the constant functor ConstF d sends every object to d and sends every

morphism to the identity morphism on d.

For the remaining types, we will go slightly out of order in order to present the simplest interpreta-

tions first. The set interpretation for a product type is given by:

SetSem (×-I `F `G) = SetProd ◦F (SetSem `F ※ SetSem `G)

SetProd is a functor from the product category Product Sets Sets to Sets. The function ◦F composes

two functors where the source of the first matches the target of the second. It is defined in the agda-

categories library by:

◦F : ∀ {o ` e o’ `’ e’ o” `” e”}

→ {C : Category o ` e} {D : Category o’ `’ e’} {E : Category o” `” e”}

→ Functor D E → Functor C D → Functor C E

The function ※ from the agda-categories library

※ : ∀ {o ` e o’ `’ e’ o” `” e”}

→ {C : Category o ` e}

→ {D1 : Category o’ `’ e’}

→ {D2 : Category o” `” e”}

→ (F : Functor C D1) → (G : Functor C D2) → Functor C (Product D1 D2)

64

takes two functors F and G with the same source C and potentially different targets D1 and D2 and

returns a functor from C to Product D1 D2. The action of F※G on an object X is given by the pair of

objects (Functor.F0 F X ,Functor.F0 G X). The action on a morphism f is given by the pair of morphisms

(Functor.F1 F f ,Functor.F1 G f).

SetProd sends each pair of sets to their cartesian product and each pair of functions (f1, f2) to the

function λ{(x, y)→ (f1 x, f2 y)}:

SetProd : Functor (Product Sets Sets) Sets

SetProd = record

{ F0 = λ { (A , B) → A ×’ B }

; F1 = λ { (f1 , f2) (x , y) → (f1 x , f2 y) }

; identity = ≡.refl

; homomorphism = ≡.refl

; F-resp-≈ = λ { (f1≈g1 , f2≈g2) → ≡.cong2 , f1≈g1 f2≈g2 }

}

The identity and homomorphism fields are trivial for SetProd, and the F-resp-≈ field is defined using the

standard library function

cong2 : ∀ {a} {A B C : Set a} (f : A → B → C) {x y u v} → x ≡ y → u ≡ v → f x u ≡ f y v

cong2 f ≡.refl ≡.refl = ≡.refl

to deduce that the pairs of morphisms (f1, f2) and (g1, g2) are equivalent from the facts that the com-

ponents are equivalent. Given the definitions of ※ and SetProd, we can see that the set interpretation

of a product type is computed by first interpreting `F and `G and then taking the cartesian product

of the resulting pair of sets or morphisms, as expected.

The set interpretation of a sum type is given by:

SetSem (+-I `F `G) = SetSum ◦F (SetSem `F ※ SetSem `G)

Analogously to SetProd, SetSum sends each pair of sets to their disjoint union, and it sends each

pair of functions (f, g) to the function λ{inj1 x→ inj1 (f x); inj2 y→ inj2 (g y)} that is defined by pattern

matching:

SetSum : Functor (Product Sets Sets) Sets

SetSum = record

65

{ F0 = λ { (A , B) → A] B }

; F1 = λ { {A , B} (f , g) (inj1 x) → inj1 (f x)

; {A , B} (f , g) (inj2 y) → inj2 (g y) }

; identity = λ { {A , B} {inj1 x} → ≡.refl

; {A , B} {inj2 y} → ≡.refl }

; homomorphism = λ { {A , A’} {B , B’} {C , C’} {f , f’} {g , g’} {inj1 x} → ≡.refl

; {A , A’} {B , B’} {C , C’} {f , f’} {g , g’} {inj2 y} → ≡.refl }

; F-resp-≈ = λ { (f≈h , g≈i) {inj1 x} → ≡.cong inj1 f≈h

; (f≈h , g≈i) {inj2 y} → ≡.cong inj2 g≈i }

}

The functor laws are proved by pattern matching and the proofs for identity and homomorphism are

trivial. The proof for F-resp-≈ is defined using ≡.cong to deduce that composing a morphism with

inj1 or inj2 (as the action of SetSum on morphisms does) preserves equality of morphisms. Given the

definitions of ※ and SetSum, we can see that the set interpretation of a sum type is computed by first

interpreting `F and `G and then taking the disjoint union of the resulting pair of sets or morphisms,

as expected.

The set interpretations of type applications are defined by:

SetSem (AppT-I {ϕ = ϕ} Γ3ϕ Gs `Gs) = eval ◦F (VarSem-TC ϕ ※ SetSemVec `Gs)

SetSem (AppF-I {ϕ = ϕ} Φ3ϕ Gs `Gs) = eval ◦F (VarSem-FV ϕ ※ SetSemVec `Gs)

These set interpretations are defined in terms of the functions

VarSem-TC : ∀ {k} (ϕ : TCVar k) → Functor SetEnvCat ([Setsˆ k ,Sets])

and

VarSem-FV : ∀ {k} (ϕ : FVar k) → Functor SetEnvCat ([Setsˆ k ,Sets])

These functions each take a variable of arity k and return a functor from the category of set environments

to the functor category [Setsˆ k ,Sets] whose objects are functors from Setsˆ k to Sets. The action of

VarSem-TC on objects takes a set environment and returns the k-ary functor of sets given by applying

ρ to ϕ. The action on morphisms takes a morphism f of set environments and returns the natural

transformation given by applying f to ϕ. VarSem-FV is defined analogously. The syntax [Setsˆ k ,Sets]

66

comes from a function we define in terms of the functor category construction Functors defined in the

agda-categories library:

[Setsˆ ,Sets] : N → Category (lsuc lzero) (lsuc lzero) (lsuc lzero)

[Setsˆ ,Sets] k = Functors (Setsˆ k) Sets

Functors takes two categories C and D as arguments. An object of Functors C D is a functor from C to

D. A morphism in Functors C D is a natural transformation, and composition is given by the vertical

composition function ◦ v . We sometimes use the following bracket syntax for Functors:

[[,]] : ∀ {o ` e o’ `’ e’} → Category o ` e → Category o’ `’ e’ → Category

[[C , D]] = Functors C D

The definitions of VarSem-TC and VarSem-FV are very similar, so we only describe the latter.

Given a variable ϕ, the action of VarSem-FVϕ on an object ρ is given by the functor SetEnv.fv ρϕ.

The action of VarSem-FVϕ on a morphism f : SetEnvMorph ρ ρ’ is given by the natural transformation

SetEnvMorph.fv f ϕ.

The other function needed to define the set interpretation of type application is the eval function

from the standard library:

eval : ∀ {o ` e o’ `’ e’}

→ {C : Category o ` e} {D : Category o’ `’ e’}

→ Functor (Product (Functors C D) C) D

The eval function takes two categories C and D and returns a functor from the product category

Product (Functors C D) C to the category D. The action of eval on a pair of objects (F,X) is defined as

the application of F to X, i.e., Functor.F0 F X. The action on a pair of morphisms (η, f) from (F,X) to

(G,Y) is defined by

NaturalTransformation.η η Y ◦ Functor.F1 F f

which is equivalent to

Functor.F1 G f ◦ NaturalTransformation.η η X

by naturality of η:

67

Functor.F0 F X Functor.F0 G X

Functor.F0 F Y Functor.F0 G Y

NaturalTransformation.η η X

Functor.F1 F f Functor.F1 G f

NaturalTransformation.η η Y

Given this definition of eval, we can see that the set interpretation of type application is a functor

whose action on objects is given by interpreting the variable ϕ as a functor from Setsˆ k to Sets and

interpreting `Gs as a vector of sets, and then applying the functor given by ϕ to this vector of sets.

The action on morphisms is given by interpreting the variable ϕ as a natural transformation η and

interpreting `Gs as a morphism f in Setsˆ k and then following one of the paths through the naturality

square associated with η and f.

The set interpretation of a Nat type is defined in Definition 4.3.1 as a set of natural transformations

that satisfy a condition about preserving related elements. For now, we define the set interpretation

of a Nat type simply as a set of natural transformations, and we will include the relation-preserving

condition when we define the relation semantics of types. Note that in Definition 4.3.1, the value of ρ

on functorial variables has no bearing on the set interpretation of a Nat type since the only functorial

variables that are used are those in α, and these variables are all overwritten in the environment by an

environment extension. Thus we can reassign the values of functorial variables in an environment prior

to interpreting a Nat type, and the interpretation will be unchanged.

The set interpretation of a Nat type (Nat-I {αs = αs} `F`G) is defined by:

SetSem (Nat-I {αs = αs} `F `G) = NatTypeFunctor αs `F `G

The functor NatTypeFunctor is defined as:

module NatType-setsem

{k : N} {Γ : TCCtx} {F G : TypeExpr} (αs : Vec (FVar 0) k)

(`F : Γ o (∅ ,++ αs) ` F) (`G : Γ o (∅ ,++ αs) ` G) where

NatTypeSem-map : ∀ {ρ ρ’ : SetEnv} (f : SetEnvMorph ρ ρ’)

→ NatTypeSem αs (NatEnv ρ) `F `G

→ NatTypeSem αs (NatEnv ρ’) `F `G

NatTypeSem-map SetEnvM[≡.refl ,] = idf

68

NatTypeFunctor : Functor SetEnvCat Sets

NatTypeFunctor = record

{ F0 = λ ρ → NatTypeSem αs (NatEnv ρ) `F `G

; F1 = λ f → NatTypeSem-map f

...

}

The action on an object ρ is given by NatTypeSem αs (NatEnv ρ) `F`G. Here NatEnv ρ is defined by:

NatEnv : SetEnv → SetEnv

NatEnv SetEnv[tc , fv] = SetEnv[tc , (λ → ConstF >)]
(8)

That is, the set environment NatEnv ρ is the same as ρ on type constructor variables, but it sends every

functorial variable to ConstF>4 . This makes it easy to show the set interpretation of Nat types is a

functor, because whenever we have a morphism f from ρ to ρ’, we are given a proof that ρ and ρ’ have

equal tc fields. If we apply NatEnv to both environments to get NatEnv ρ and NatEnv ρ’, then these

environments are also equal on their fv fields. Thus, if we have a morphism from ρ to ρ’, then NatEnv ρ

and NatEnv ρ’ are identical. This allows us to define the action of NatTypeFunctor on morphisms as an

identity morphism, as shown in the definition of NatTypeSem-map above5.

The definition of NatTypeSem αs (NatEnv ρ) `F`G, itself is given by the record type:

{-# NO POSITIVITY CHECK #-}

{-# NO UNIVERSE CHECK #-}

record NatTypeSem {k : N} {Γ : TCCtx} {F G : TypeExpr} (αs : Vec (FVar 0) k) (ρ : SetEnv)

(`F : Γ o (∅ ,++ αs) ` F) (`G : Γ o (∅ ,++ αs) ` G)

: Set where

constructor NatT2[]

field

nat : NaturalTransformation (extendSetSem-αs αs ρ (SetSem `F)) (extendSetSem-αs αs ρ (SetSem `G))

This record type consists of a single field nat that is a natural transformation between two functors of

type [Setsˆ k ,Sets]. The function

4There is nothing special about the functor ConstF>. We just want to send all functorial variables to the same functor,
and we chose ConstF> for this purpose.

5In this part of the implementation, the identity function in Agda is renamed to idf to avoid confusion with the identity
morphisms of categories.

69

extendSetSem-αs : ∀ {k} → (αs : Vec (FVar 0) k)

→ (ρ : SetEnv)

→ Functor SetEnvCat Sets

→ Functor (Setsˆ k) Sets

takes a functor from SetEnvCat to Sets and returns a functor from Setsˆ k to Sets. It is defined in terms

of environment extension. The Agda functor

extendSetSem-αs αs ρ (SetSem`F)

corresponds to

λA. JΓ;α ` F KSetρ[α := A]

from Definition 4.3.1. The universe Agda computes for this record type is Set1 rather than Set because

of the way universe levels are computed for the type NaturalTransformation. To make this record type

fit into the universe Set, as is required for the set interpretation to be an object of Sets, we can use the

NO UNIVERSE CHECK flag to make Agda turn off its universe checker for this definition. Generally,

turning off the universe checker can lead to inconstitency of Agda’s type system, but in this instance

it is justified because, as shown in [5], some categorical reasoning (beyond the scope of this thesis)

shows that the set of natural transformations given in Definition 4.3.1 is indeed a set. We must also

use the NO POSITIVITY CHECK flag because the data of NatTypeSem refer to SetSem, which is defined

in terms of NatTypeSem. The remaining fields for the functor NatTypeFunctor are straightforward to

prove because the action on morphisms is the identity morphism.

The set interpretation of a µ-type µ-I`F Ks`Ks is defined by:

SetSem (µ-I `F Ks `Ks) = MuSem `F (SetSemVec `Ks)

The function MuSem is defined by:

MuSem : ∀ {k : N} {Γ : TCCtx} {F : TypeExpr}

{ϕ : FVar k} {αs : Vec (FVar 0) k}

→ Γ o (∅ ,++ αs) ,, ϕ ` F

→ Functor SetEnvCat (Setsˆ k) → Functor SetEnvCat Sets

MuSem {k} `F SemKs =

70

let T : Functor SetEnvCat [[[Setsˆ k ,Sets] , [Setsˆ k ,Sets]]]

T = TSet `F

fixT : Functor SetEnvCat [Setsˆ k ,Sets]

fixT = fixH ◦F T

in eval ◦F (fixT ※ SemKs)

Like the set interpretation of type applications, the set interpretation of the µ-type is given in terms

of eval. This means the action on an object ρ is computed by first taking the fixpoint fixT of the

higher-order functor obtained by applying T to ρ, and then applying this fixpoint to the vector of sets

given by applying the functor SemKs interpreting the arguments to ρ. The functor fixH

fixH : ∀ {k} → Functor [[[Setsˆ k ,Sets] , [Setsˆ k ,Sets]]] [Setsˆ k ,Sets]

takes a higher-order functor and returns its fixpoint, which is a first-order functor, i.e., an object of

[Setsˆ k ,Sets]. The action of fixH on morphisms takes a higher-order natural transformation from H1 to

H2 and returns a natural transformation from the fixpoint of H1 to the fixpoint of H2. We will discuss

how fixH is defined in Section 4.4.1. The function TSet

TSet : ∀ {k : N} {Γ : TCCtx} {H : TypeExpr}

{ϕ : FVar k} {αs : Vec (FVar 0) k}

→ Γ o (∅ ,++ αs) ,, ϕ ` H

→ Functor (SetEnvCat) ([[[Setsˆ k ,Sets] , [Setsˆ k ,Sets]]])

takes a typing judgment Γ o (∅ ,++ αs),,ϕ ` H for the body of a µ-type and returns a functor from the

category of set environments to the category [[[Setsˆ k ,Sets] , [Setsˆ k ,Sets]]] whose objects are higher-

order functors and whose morphisms are higher-order natural transformations. TSet`H corresponds

to the functor T Set
H described in Section 4.3. In this formalization, TSet is defined in terms of another

function TSetProd:

TSetProd : ∀ {k : N} {Γ : TCCtx} {H : TypeExpr}

{ϕ : FVar k} {αs : Vec (FVar 0) k}

→ Γ o (∅ ,++ αs) ,, ϕ ` H

→ Functor (Product (Product SetEnvCat [Setsˆ k ,Sets]) (Setsˆ k)) Sets

71

TSetProd takes a typing judgment for the body of a µ-type and returns a functor whose source category

is

Product (Product SetEnvCat [Setsˆ k ,Sets]) (Setsˆ k)) Sets

Its objects are triples ((ρ,F),As), where ρ : SetEnv, F : Functor (Setsˆ k) Sets, and As : Vec Set k. TSetProd

is defined in terms of environment extension, and its action on objects takes a triple ((ρ,F),As) and re-

turns the set given by interpreting the typing judgment Γ o (∅ ,++ αs),,ϕ ` H in the environment given

by extendeding ρ to send ϕ to F and αs to As, i.e.,

(Functor.F0 SetSem`H)((ρ[ϕ : fv = F])[αs : fvs = As])

The action of TSetProd`H on morphisms is analogous and takes a triple of morphisms ((f, η), gs)

to a function given by applying Functor.F1 SetSem`H to the morphism of set environments given by

extending f to send ϕ to η and αs to gs.

Given this definition of TSetProd, we can use currying to define TSet. In the category of sets, we

can take a function

f : (A×′ B)→ C

whose domain is a product and curry it to get a new function:

f ′ : A→ (B→ C)

The curried function f ′ is defined taking its arguments and feeding them to f as a pair, i.e.,

f ′ x y = f (x, y)

Currying can be extended from sets and functions to functors and natural transformations. Currying

at the level of functors is defined in the agda-categories library by the function:

curry0 : ∀ {o ` e o’ `’ e’ o” `” e” : Level}

→ {C1 : Category o ` e} {C2 : Category o’ `’ e’} {D : Category o” `” e”}

→ Functor (Product C1 C2) D

→ Functor C1 (Functors C2 D)

72

Using curry0, we can define TSet as:

TSet {k} {Γ} {H} {ϕ} {αs} `H = curry0 (curry0 (TSetProd `H))

Note that we have to apply curry0 twice. The first application gives a functor of type

Functor (Product SetEnvCat [Setsˆ k ,Sets]) (Functors (Setsˆ k) Sets)

= Functor (Product SetEnvCat [Setsˆ k ,Sets]) [Setsˆ k ,Sets]

and the second application gives a functor of type

Functor SetEnvCat (Functors [Setsˆ k ,Sets] [Setsˆ k ,Sets])

= Functor SetEnvCat [[[Setsˆ k ,Sets] , [Setsˆ k ,Sets]]]

The fact that we define TSet in terms of TSetProd and curry0 is a design decision. We could have defined

TSet directly, but this would require manipulating higher-order functors and natural transformations.

Since the target category of TSetProd is just the category of sets, it is somewhat easier to define than

TSet, since the action of TSetProd on morphisms just gives functions rather than higher-order natural

transformations.

4.4.1 Fixpoints of Functors in Agda

In this section we present our Agda formalization of fixpoints of higher-order functors over the category

of sets. The goal of this development is to define the function fixH

fixH : ∀ {k} → Functor [[[Setsˆ k ,Sets] , [Setsˆ k ,Sets]]] [Setsˆ k ,Sets]

that is used to interpret µ-types. The action of fixH on objects is defined by fixH0:

73

module object-fixpoint {k : N} where

HFunc : Set1

HFunc = Functor ([Setsˆ k ,Sets]) ([Setsˆ k ,Sets])

{-# NO POSITIVITY CHECK #-}

data HFixObj (H : HFunc) : Vec Set k → Set

{-# TERMINATING #-}

HFix-fmap : ∀ (H : HFunc) → {As Bs : Vec Set k} → VecMorph As Bs

→ HFixObj H As → HFixObj H Bs

{-# TERMINATING #-}

HFix-id : ∀ (H : HFunc) {As} {xs} → HFix-fmap H {As} {As} (Category.id (Setsˆ k)) xs ≡ xs

{-# TERMINATING #-}

HFix-homo : ∀ (H : HFunc) {As Bs Cs} → {f : VecMorph As Bs} → {g : VecMorph Bs Cs}

→ ∀ {x} → HFix-fmap H (Category. ◦ (Setsˆ k) g f) x ≡ HFix-fmap H g (HFix-fmap H f x)

{-# TERMINATING #-}

HFix-resp : ∀ (H : HFunc) {As Bs} → {fs gs : VecMorph As Bs}

→ (Setsˆ k) [fs ≈ gs]

→ ∀ {x : HFixObj H As} → HFix-fmap H fs x ≡ HFix-fmap H gs x

fixH0 : ∀ (H : HFunc) → Functor (Setsˆ k) Sets

fixH0 H = record

{ F0 = HFixObj H

; F1 = HFix-fmap H

; identity = HFix-id H

; homomorphism = HFix-homo H

; F-resp-≈ = HFix-resp H

}

The function fixH0 takes a higher-order functor H and returns the fixpoint of H, which is itself a

(first-order) functor. The action of the fixpoint fixH0 H on objects is given by the data type HFixObj H,

74

which takes a vector of sets As and returns a set HFixObj H As:

data HFixObj H where

hin : ∀ {As : Vec Set k}

→ Functor.F0 (Functor.F0 H (fixH0 H)) As

→ HFixObj H As

HFixObj is defined by a single constructor hin that, for any vector of types As, takes an argument of

type

Functor.F0 (Functor.F0 H (fixH0 H)) As

and produces an element of HFixObj H As. The type (and name) of hin is motivated by the fact that in

a categorical semantics such as that of [5], the elements of a fixpoint (µT)X can be defined by applying

a morphism inX : (T µT)X → (µT)X to the elements of (T µT)X, where T is a higher-order functor

on sets. The morphisms inX : (T µT)X → (µT)X form a natural transformation in : (T µT)⇒ µT .

The action of the fixpoint fixH0 H on morphisms is given by HFix-fmap:

HFix-fmap H {As} {Bs} gs (hin {As} x) = hin {!!} -- Goal: Functor.F0 (Functor.F0 H (fixH0 H)) Bs

HFix-hmap is defined by pattern matching on the constructor hin, and the definition must be given using

hin, since this is the only constructor for HFixObj. The goal type is

Functor.F0 (Funtor.F0 H (fixH0 H)) Bs

and we have

x : Functor.F0 (Funtor.F0 H (fixH0 H)) As

We complete the definition using the action on morphisms of the functor Funtor.F0 H (fixH0 H) applied

to the morphism gs:

HFix-fmap H {As} {Bs} gs (hin {As} x) = hin (Functor.F1 (Functor.F0 H (fixH0 H)) gs x)

The NO POSITIVITY CHECK flag is required for HFixObj because fixH0, which depends on HFixObj,

appears in a non-positive position in the type of hin, i.e., it is used as the argument to some function.

This mutual dependence and non-positivity means that Agda cannot determine on its own that HFixObj

is well-defined.

75

The TERMINATING flag must be used to turn off the termination checker for HFix-fmap because, like

HFixObj, it is mutually dependent with fixH0, and Agda cannot determine that this mutual recursion

is well-defined. This may seem worrying at first, but for the higher-order functors we are interested in

(given by the interpretations of types) these functions will always terminate for an input constructed

from a finite number of applications of hin. The other functions HFix-id, etc., are defined similarly to

HFix-fmap in terms of pattern matching, so they also require the TERMINATING flag.

We can now define the action of fixH on morphisms as:

{-# TERMINATING #-}

fixH1 : ∀ {k} (H1 H2 : Functor ([Setsˆ k ,Sets]) ([Setsˆ k ,Sets]))

→ NaturalTransformation H1 H2

→ NaturalTransformation (fixH0 H1) (fixH0 H2)

fixH1 {k} H1 H2 η = record { η = µη ; commute = commutes ; sym-commute = λ f → ≡.sym (commutes f) }

where µη : (Xs : Vec Set k) → HFixObj H1 Xs → HFixObj H2 Xs

µη = fixH1-component η

commutes : ∀ {Xs Ys : Vec Set k} → (f : VecMorph Xs Ys)

→ ∀ {x : HFixObj H1 Xs}

→ µη Ys (Functor.F1 (fixH0 H1) f x) ≡ Functor.F1 (fixH0 H2) f (µη Xs x)

(9)

The function fixH1 takes a higher-order natural transformation η and returns a natural transformation

between fixpoints. The components of fixH1 η are defined by:

76

{-# TERMINATING #-}

fixH1-component : ∀ {k} {H1 H2 : Functor ([Setsˆ k ,Sets]) ([Setsˆ k ,Sets])}

→ NaturalTransformation H1 H2

→ (Xs : Vec Set k) → HFixObj H1 Xs → HFixObj H2 Xs

fixH1-component {k} {H1} {H2} η Xs (hin x) =

hin (NaturalTransformation.η ηµH2 Xs (NaturalTransformation.η H1µη Xs x))

where open Functor H1 renaming (F0 to H10)

open Functor H2 renaming (F0 to H20)

ηµH2 : NaturalTransformation (H10 (fixH0 H2)) (H20 (fixH0 H2))

ηµH2 = NaturalTransformation.η η (fixH0 H2)

H1µη : NaturalTransformation (H10 (fixH0 H1)) (H10 (fixH0 H2))

H1µη = Functor.F1 H1 (fixH1 H1 H2 η)

(10)

To define a component from HFixObj H1 Xs to HFixObj H2 Xs by pattern matching, we have two possible

paths to choose from, shown in Figure 4.1 below. The natural transformations µηH2 and H1µη are

defined in (10), and the other natural transformations in Figure 4.1 are defined by:

ηµH1 : NaturalTransformation (H10 (fixH0 H1)) (H20 (fixH0 H1))

ηµH1 = NaturalTransformation.η η (fixH0 H1)

H2µη : NaturalTransformation (H20 (fixH0 H1)) (H20 (fixH0 H2))

H2µη = Functor.F1 H2 (fixH1 H1 H2 η)

H10 (fixH0 H1) H20 (fixH0 H1)

H10 (fixH0 H2) H20 (fixH0 H2)

ηµH1

H1µη H2µη

ηµH2

Figure 4.1: Naturality square for fixH1 H1 H2 η in the functor category [Setsˆ k ,Sets].

It turns out that both paths of Figure 4.1 are equivalent, by naturality, so we choose the path given

by the left and bottom morphisms in Figure 4.1 to define fixH1-component. We elide the definition of

commutes in (9), but commutes is defined by pattern matching on the hin constructor, using naturality

77

(the commute field) of ηµH2 and H1µη. Since the definitions of fixH1 and fixH1-component are self-

referential, these definitions also require the TERMINATING flag.

We must also prove the functor laws for fixH1. That is, we must define the functions

fixH1-identity : ∀ {k} (H : Functor ([Setsˆ k ,Sets]) ([Setsˆ k ,Sets]))

→ [Setsˆ k ,Sets] Categories.Category.[

fixH1 H H (Category.id [[[Setsˆ k ,Sets] , [Setsˆ k ,Sets]]] {H})

≈ Category.id [Setsˆ k ,Sets] {fixH0 H}

]

fixH1-homomorphism : ∀ {k} (H1 H2 H3 : Functor ([Setsˆ k ,Sets]) ([Setsˆ k ,Sets]))

→ (f : NaturalTransformation H1 H2) → (g : NaturalTransformation H2 H3)

→ [Setsˆ k ,Sets] Categories.Category.[

fixH1 H1 H3 (g ◦v f)

≈ fixH1 H2 H3 g ◦v fixH1 H1 H2 f

]

fixH1-F-resp : ∀ {k} (H1 H2 : Functor ([Setsˆ k ,Sets]) ([Setsˆ k ,Sets]))

→ (f g : NaturalTransformation H1 H2)

→ [[[Setsˆ k ,Sets] , [Setsˆ k ,Sets]]] Categories.Category.[f ≈ g]

→ [Setsˆ k ,Sets] Categories.Category.[

fixH1 H1 H2 f ≈ fixH1 H1 H2 g

]

The function fixH1-identity proves that the fixpoint of an identity natural transformation on H is an

identity natural transformation the fixpoint fixH0 H. The function fixH1-homomorphism proves that

the fixpoint of a composition of a pair of natural transformations is equivalent to the composition of

their fixpoints. The function fixH1-F-resp proves that fixH1 preserves morphism equality. We elide the

definitions of these functions because the definitions are somewhat long and technical.

With these functions in hand, we can define the functor fixH:

fixH : ∀ {k} → Functor [[[Setsˆ k ,Sets] , [Setsˆ k ,Sets]]] [Setsˆ k ,Sets]

fixH = record

78

{ F0 = λ H → fixH0 H

; F1 = λ {H1} {H2} η → fixH1 H1 H2 η

; identity = λ {H} → fixH1-identity H

; homomorphism = λ {H1} {H2} {H3} {f} {g} → fixH1-homomorphism H1 H2 H3 f g

; F-resp-≈ = λ {H1} {H2} {f} {g} f≈g → fixH1-F-resp H1 H2 f g f≈g

}

We can also prove some properties about this fixpoint construction. In particular, we want to prove

the application of H to the fixpoint fixH0 H is isomorphic to the fixpoint itself. Since the objects we are

comparing are functors, we want to show there exists a natural isomorphism between these functors.

First, we define the two natural transformations that make up the natural isomorphism:

in-nat : ∀ {k} → (H : Functor [Setsˆ k ,Sets] [Setsˆ k ,Sets])

→ NaturalTransformation (Functor.F0 H (fixH0 H)) (fixH0 H)

in-nat H = record { η = λ { Xs x → hin x }

; commute = λ f → ≡.refl

; sym-commute = λ f → ≡.refl }

in-inv-nat : ∀ {k} → (H : Functor [Setsˆ k ,Sets] [Setsˆ k ,Sets])

→ NaturalTransformation (fixH0 H) (Functor.F0 H (fixH0 H))

in-inv-nat H =

record { η = λ { X (hin x) → x }

; commute = λ { {Xs} {Ys} fs {hin x} → ≡.refl }

; sym-commute = λ { {Xs} {Ys} fs {hin x} → ≡.refl } }

The components of in-nat are given by hin, and the components of the inverse natural transformation

in-inv-nat are given by pattern matching on hin and returning its argument x. The naturality proofs for

these components are trivial because of the way HFix-fmap is defined by pattern matching on hin.

Now we can use the definition of NaturalIsomorphism defined in the agda-categories library by:

record NaturalIsomorphism

{o ` e o’ `’ e’}

{C : Category o ` e}

79

{D : Category o’ `’ e’}

(F G : Functor C D) : Set (o t ` t `’ t e’) where

field

F⇒G : NaturalTransformation F G

F⇐G : NaturalTransformation G F

module ⇒ = NaturalTransformation F⇒G

module ⇐ = NaturalTransformation F⇐G

field

iso : ∀ (X : Category.Obj C) → Categories.Morphism.Iso D (⇒.η X) (⇐.η X)

According to this definition, a natural isomorphism consists of a pair of natural transformations where

every pair of components forms an isomorphism. Isomorphism is defined in the agda-categories library

by:

record Iso {o ` e} (C : Category o ` e)

{A B : Category.Obj C}

(from : C [A , B]) (to : C [B , A]) : Set e where

open Category C

field

isol : to ◦ from ≈ id

isor : from ◦ to ≈ id

That is, an isomorphism is a pair of morphisms from and to and a pair of proofs that the compositions

of from and to are identity morphisms.

Using these definitions, we can prove that in-nat and in-inv-nat form a natural isomorphism:

in-iso : ∀ {k} (H : Functor [Setsˆ k ,Sets] [Setsˆ k ,Sets])

→ (Xs : Vec Set k)

→ Categories.Morphism.Iso Sets

(NaturalTransformation.η (in-inv-nat H) Xs)

(NaturalTransformation.η (in-nat H) Xs)

80

in-iso H Xs = record { isol = λ { {hin x} → ≡.refl }

; isor = ≡.refl }

The proofs that the compositions of the components of in-nat and in-inv-nat are identity morphisms

are given by pattern matching. It is easy to see that the compositions are indeed identity morphisms:

one component applies the hin constructor to its input, and the other component strips away the hin

constructor, so both compositions of these components leave their inputs unchanged. We combine all

of these data into a term of type NaturalIsomorphism (fixH0 H) (Functor.F0 H (fixH0 H)):

in-nat-iso : ∀ {k} → (H : Functor [Setsˆ k ,Sets] [Setsˆ k ,Sets])

→ NaturalIsomorphism (fixH0 H) (Functor.F0 H (fixH0 H))

in-nat-iso H = record { F⇒G = in-inv-nat H ; F⇐G = in-nat H ; iso = in-iso H }

This natural isomorphism shows that fixH0 H is indeed the fixpoint of the higher-order functor H.

81

Chapter 5

Syntax of Terms

In this chapter we present the syntax of terms for the calculus N and formalize this syntax in Agda.

To do this, we must introduce the notions of term variables, term contexts, and term formation rules.

5.1 Term Variables and Term Contexts

We assume an infinite set V of term variables, disjoint from the sets of type constructor variables and

functorial variables. Given a non-functorial context Γ and a functorial context Φ, a term context for Γ

and Φ is a set of bindings of the form x : F where x ∈ V and Γ; Φ ` F . We write Γ; Φ ` ∆ to denote

that ∆ is a term context for Γ and Φ. In contrast with type variables and type contexts, it is necessary

to ensure that a particular term variable appears at most once in a term context, because it doesn’t

make sense to have both x : F and x : G in the same term context for different types F and G.

To formalize this notion of term contexts, we must first choose how to represent term variables in

Agda. The type of term variables is called TermId in the formalization:

TermId : Set

TermId = String

We use the built-in String type from the standard library for term variables, just as we did for type

variables.

82

5.1.1 Term Contexts in Agda

Term contexts are defined in Agda by:

data TermCtx (Γ : TCCtx) (Φ : FunCtx) : Set where

∆∅ : TermCtx Γ Φ

,- : 〈 〉 : ∀ (∆ : TermCtx Γ Φ)

→ (x : TermId)

→ {F : TypeExpr} → (`F : Γ o Φ ` F)

→ (isYes (∆-lookup x ∆) ≡ false)

→ TermCtx Γ Φ

A term context is either empty, or is constructed from a context ∆ and a variable x of type F, where

x does not appear in ∆. The fact that x does not appear in ∆ is formalized by the argument of type

isYes (∆-lookup x ∆) ≡ false, where isYes P is a boolean that is true iff there is a proof of the proposition

P. It is defined in the standard library as:

isYes : ∀ {a} {P : Set a} → Dec P → Bool

isYes (yes) = true

isYes (no) = false

We must also define a data type that asserts a variable appears in a context:

data :3 : ∀ {Γ : TCCtx} {Φ : FunCtx} → TermCtx Γ Φ → TermId → Set where

z3 : ∀ {Γ : TCCtx} {Φ : FunCtx} {∆ : TermCtx Γ Φ} {x : TermId}

→ {p : isYes (∆-lookup x ∆) ≡ false}

→ {F : TypeExpr} → {`F : Γ o Φ ` F}

→ (∆ ,- x : `F 〈 p 〉) :3 x

s3 : ∀ {Γ : TCCtx} {Φ : FunCtx} {∆ : TermCtx Γ Φ} {x y : TermId}

→ {p : isYes (∆-lookup x ∆) ≡ false}

→ {F : TypeExpr} → {`F : Γ o Φ ` F}

→ ∆ :3 y

→ (∆ ,- x : `F 〈 p 〉) :3 y

A variable cannot appear in an empty context, and there are two ways for a variable to appear in a

nonempty context ∆ ,- x : `F 〈 p〉. The constructor z3 is used to prove that a variable x is the rightmost

83

variable in a context, and the constructor s3 is used to prove that a variable y appears in ∆ ,- x : `F 〈 p〉.

when y appears in ∆. Given this definition of :3 , we can define a function that decides whether a

variable appears in a context:

∆-lookup : ∀ {Γ : TCCtx} {Φ : FunCtx} → (x : TermId) (∆ : TermCtx Γ Φ) → Dec (∆ :3 x)

It is defined by pattern matching on the term context ∆. The type isYes (∆-lookup x ∆) ≡ false asserts

that the result of isYes (∆-lookup x ∆) is equal to false, i.e., that x does not appear in ∆. There are

other ways to formalize that x does not appear in ∆, but this definition using isYes is particularly

useful when we need to construct an actual term context. By using isYes and ∆-lookup that decides

whether x appears in ∆, we force Agda to evaluate ∆-lookup x ∆ while it is type-checking elements of

TermCtx Γ Φ. Since ∆-lookup x ∆ is evaluated during type-checking, Agda can produce a term of type

isYes (∆-lookup x ∆) ≡ false automatically, if x is indeed absent from ∆. For example, if we have two

term variables x : TermId and y : TermId that are defined by different strings, then we can define the

term context containing only x of type 11 as:

ctx-x : TermCtx ∅ ∅

ctx-x = ∆∅ ,- x : 1-I 〈 ≡.refl 〉

The proof for isYes ... ≡ false is given trivially by ≡.refl since there are no constructors of :3 for empty

contexts. To add y of type 1 to this context, we define another term context:

ctx-x-y : TermCtx ∅ ∅

ctx-x-y = ctx-x ,- y : 1-I 〈 {!!} 〉 -- Goal: isYes (∆-lookup y ctx-x) ≡ false

Now we must give a proof of isYes (∆-lookup y ctx-x) ≡ false. But if we ask Agda to reduce the goal

further, we get:

ctx-x-y’ : TermCtx ∅ ∅

ctx-x-y’ = ctx-x ,- y : 1-I 〈 {!!} 〉 -- Goal: false ≡ false

Now the goal is simply false ≡ false, which can be proven by ≡.refl:

ctx-x-y” : TermCtx ∅ ∅

ctx-x-y” = ctx-x ,- y : 1-I 〈 ≡.refl 〉

1The N types used in this example are not important, so we use 1 and the constructor 1-I for its typing judgment.

84

Γ; Φ ` F
Γ; Φ |∆, x : F ` x : F

Γ; Φ |∆ ` t : 0 Γ; Φ ` F
Γ; Φ |∆ ` ⊥F t : F Γ; Φ |∆ ` > : 1

Γ; Φ |∆ ` s : F

Γ; Φ |∆ ` inl s : F +G

Γ; Φ |∆ ` t : G

Γ; Φ |∆ ` inr t : F +G

Γ; Φ ` F,G Γ; Φ |∆ ` t : F +G Γ; Φ |∆, x : F ` l : K Γ; Φ |∆, y : G ` r : K

Γ; Φ | ∆ ` case t of {x 7→ l; y 7→ r} : K

Γ; Φ |∆ ` s : F Γ; Φ |∆ ` t : G

Γ; Φ |∆ ` (s, t) : F ×G
Γ; Φ |∆ ` t : F ×G
Γ; Φ |∆ ` π1t : F

Γ; Φ |∆ ` t : F ×G
Γ; Φ |∆ ` π2t : G

Γ;α ` F Γ;α ` G Γ;α |∆, x : F ` t : G

Γ; ∅ |∆ ` Lαx.t : Natα F G

Γ; Φ ` K Γ; ∅ |∆ ` t : Natα F G Γ; Φ |∆ ` s : F [α := K]

Γ; Φ |∆ ` tKs : G[α := K]

Γ;ϕ, γ ` H Γ;β, γ ` F Γ;β, γ ` G

Γ; ∅ | ∅ ` mapF,GH : Nat∅ (Natβ,γ F G) (Natγ H[ϕ :=β F] H[ϕ :=β G])

Γ;ϕ, α ` H

Γ; ∅ | ∅ ` inH : NatβH[ϕ :=β (µϕ.λα.H)β][α := β] (µϕ.λα.H)β

Γ;ϕ, α ` H Γ;β ` F

Γ; ∅ | ∅ ` foldFH : Nat∅ (Natβ H[ϕ :=β F][α := β]F) (Natβ (µϕ.λα.H)β F)

Figure 5.1: Well-formed terms of N .

5.2 Well-formed Terms

A term judgment Γ; Φ |∆ ` x : F is parameterized by a non-functorial context Γ, a functorial context

Φ, a term context ∆, and a type F , where Γ; Φ ` ∆ and Γ; Φ ` F . The well-formed terms of N are

defined by the inference rules in Figure 5.1.

The calculus N includes the standard introduction and elimination rules for term variables, 0, 1,

+, and ×. The term Lαx.t is analogous to the abstraction term used to define functions in the lambda

calculus. The L rule introduces a term of type NatαF G, and it binds the type variables in α and the

term variable x. Note that F and G have to be typed in contexts with α, and the resulting term Lαx.t

is formed with respect to contexts Γ and ∅, so we must have that Γ; ∅ ` ∆. The term tKs applies

a term t of Nat type to a term s, and there is one type in K for every functorial variable in α. It

represents the application of a natural transformation at its component for the types in K. The term

mapF,GH represents the functorial map function that maps a vector of natural transformations over the

85

functorial variables in ϕ in a type H. In the rule for mapF,GH , there is one type F and one type G for

each functorial variable in ϕ. Moreover, for each ϕk in ϕ the number of functorial variables in β in the

judgments for its corresponding type F and G is k. The term inH represents the natural transformation

from T (µT) to µT for a higher-order functor T and is used to define the terms of a µ-type. The term

foldFH represents a stylized form of recursion that can be defined for semantic fixpoints, and it is used to

define recursive functions that take µ-types as their inputs. In the rules for inH and foldFH , the functorial

variables in β do not appear in H, and there is one β for every α.

To simplify the formalization of terms, we modify the map rule from [5] slightly so that map is only

parameterized by a single type F and a single type G. This yields the following inference rule:

Γ;ϕ, γ ` H Γ;β, γ ` F Γ;β, γ ` G

Γ; ∅ | ∅ ` mapF,GH : Nat∅ (Natβ,γ F G) (Natγ H[ϕ :=β F] H[ϕ :=β G])

This modified rule is less expressive than the one given in Figure 5.1, but it is still expressive enough

to give a map term for types functorial in a single variable such as List α and PTree α.

The “extra” variables in γ in the map rule allow us to map polymorphic functions (i.e., terms of

Nat type) over nested types. For example, if we have the types List γ and PTree γ then we can define a

term of Nat type that flattens perfect trees into lists. To map the flattening function over the functorial

variable α in the type List α, we can use the following map term:

Γ;α, γ ` List α Γ; γ ` PTree γ Γ; γ ` List γ

Γ; ∅ | ∅ ` mapPTree γ,List γ
List α : Nat∅(Natγ(PTree γ) (List γ)) (Natγ (List (PTree γ)) (List (List γ)))

5.3 Well-formed Terms in Agda

Before formalizing these inference rules, we define the grammar of term expressions in Agda by:

data TermExpr : Set where

tmvar : TermId → TermExpr

⊥e : TermExpr → TermExpr

>i : TermExpr

inl : TermExpr → TermExpr

inr : TermExpr → TermExpr

case of[7→ o 7→] : (t : TermExpr) → (x : TermId)

86

→ (l : TermExpr) → (y : TermId) → (r : TermExpr) → TermExpr

,, : TermExpr → TermExpr → TermExpr

π1 : TermExpr → TermExpr

π2 : TermExpr → TermExpr

L[] , : {k : N} → (αs : Vec (FVar 0) k) → (x : TermId) → (t : TermExpr) → TermExpr

app [] : {k : N} → (t : TermExpr) → (Ks : Vec TypeExpr k) → (s : TermExpr) → TermExpr

map : (F : TypeExpr) → (G : TypeExpr) → (H : TypeExpr) → TermExpr

inn : (H : TypeExpr) → TermExpr

fold : (F : TypeExpr) → (H : TypeExpr) → TermExpr

A term expression is simply the name of a term (e.g., >, map, etc.) without any reference to its type

or contexts. The grammar of term expressions is not explicitly defined in [5], but we can infer it from

Figure 5.1. TermExpr has one constructor for each of the inference rules there. The constructors of

TermExpr can be thought of as “term constructors” that take some parameters and produce a term.

The types of these constructors are derived from those inference rules, and some of their arguments

are named to show the correspondence more clearly. We use inn as the name of the constructor for in

because “in” is a keyword in Agda.

Using this definition of TermExpr, we can define the set of well-formed terms by:

data o | ` : : ∀ (Γ : TCCtx) (Φ : FunCtx)

→ TermCtx Γ Φ

→ TermExpr

→ {F : TypeExpr}

→ Γ o Φ ` F

→ Set where

var-I : ∀ {Γ : TCCtx} {Φ : FunCtx}

→ (∆ : TermCtx Γ Φ)

→ (x : TermId)

→ {F : TypeExpr}

→ (`F : Γ o Φ ` F)

→ (p : isYes (∆-lookup x ∆) ≡ false)

→ Γ o Φ | ∆ ,- x : `F 〈 p 〉 ` tmvar x : `F

87

⊥e-I : ∀ {Γ : TCCtx} {Φ : FunCtx}

→ (∆ : TermCtx Γ Φ)

→ {F : TypeExpr}

→ (`F : Γ o Φ ` F)

→ (t : TermExpr)

→ Γ o Φ | ∆ ` t : 0-I

→ Γ o Φ | ∆ ` ⊥e t : `F

>-I : ∀ {Γ : TCCtx} {Φ : FunCtx}

→ (∆ : TermCtx Γ Φ)

→ Γ o Φ | ∆ ` >i : 1-I

inl-I : ∀ {Γ : TCCtx} {Φ : FunCtx}

→ (∆ : TermCtx Γ Φ)

→ {F G : TypeExpr}

→ (`F : Γ o Φ ` F) (`G : Γ o Φ ` G)

→ (s : TermExpr)

→ Γ o Φ | ∆ ` s : `F

→ Γ o Φ | ∆ ` inl s : +-I `F `G

inr-I : ∀ {Γ : TCCtx} {Φ : FunCtx}

→ (∆ : TermCtx Γ Φ)

→ {F G : TypeExpr}

→ (`F : Γ o Φ ` F) (`G : Γ o Φ ` G)

→ (s : TermExpr)

→ Γ o Φ | ∆ ` s : `G

→ Γ o Φ | ∆ ` inr s : +-I `F `G

case-I : ∀ {Γ : TCCtx} {Φ : FunCtx}

→ (∆ : TermCtx Γ Φ)

→ {F G K : TypeExpr}

→ (`F : Γ o Φ ` F) → (`G : Γ o Φ ` G) → (`K : Γ o Φ ` K)

→ (t : TermExpr)

88

→ Γ o Φ | ∆ ` t : +-I `F `G

→ (x : TermId)

→ (px : isYes (∆-lookup x ∆) ≡ false)

→ (l : TermExpr)

→ Γ o Φ | ∆ ,- x : `F 〈 px 〉 ` l : `K

→ (y : TermId)

→ (py : isYes (∆-lookup y ∆) ≡ false)

→ (r : TermExpr)

→ Γ o Φ | ∆ ,- y : `G 〈 py 〉 ` r : `K

→ Γ o Φ | ∆ ` case t of[x 7→ l o y 7→ r] : `K

pair-I : ∀ {Γ : TCCtx} {Φ : FunCtx}

→ (∆ : TermCtx Γ Φ)

→ {F G : TypeExpr}

→ (`F : Γ o Φ ` F) (`G : Γ o Φ ` G)

→ (s : TermExpr)

→ Γ o Φ | ∆ ` s : `F

→ (t : TermExpr)

→ Γ o Φ | ∆ ` t : `G

→ Γ o Φ | ∆ ` (s ,, t) : ×-I `F `G

π1-I : ∀ {Γ : TCCtx} {Φ : FunCtx}

→ (∆ : TermCtx Γ Φ)

→ {F G : TypeExpr}

→ (`F : Γ o Φ ` F) (`G : Γ o Φ ` G)

→ (t : TermExpr)

→ Γ o Φ | ∆ ` t : ×-I `F `G

→ Γ o Φ | ∆ ` π1 t : `F

π2-I : ∀ {Γ : TCCtx} {Φ : FunCtx}

→ (∆ : TermCtx Γ Φ)

→ {F G : TypeExpr}

→ (`F : Γ o Φ ` F) (`G : Γ o Φ ` G)

89

→ (t : TermExpr)

→ Γ o Φ | ∆ ` t : ×-I `F `G

→ Γ o Φ | ∆ ` π2 t : `G

L-I : ∀ {Γ : TCCtx} {Φ : FunCtx} {k : N} {αs : Vec (FVar 0) k}

→ {F G : TypeExpr}

→ (`F : Γ o (∅ ,++ αs) ` F) (`G : Γ o (∅ ,++ αs) ` G)

→ (∆ : TermCtx Γ ∅)

→ (x : TermId)

→ (p : isYes (∆-lookup x (weakenFunCtx-∆-Vec αs ∆)) ≡ false)

→ (t : TermExpr)

→ Γ o (∅ ,++ αs) | (weakenFunCtx-∆-Vec αs ∆) ,- x : `F 〈 p 〉 ` t : `G

→ Γ o ∅ | ∆ ` L[αs] x , t : Nat-I `F `G

app-I : ∀ {Γ : TCCtx} {Φ : FunCtx} {k : N} {αs : Vec (FVar 0) k}

→ {F G : TypeExpr} {Ks : Vec TypeExpr k}

→ (`F : Γ o (∅ ,++ αs) ` F) (`G : Γ o (∅ ,++ αs) ` G)

→ (`Ks : foreach (λ K → Γ o Φ ` K) Ks)

→ (∆ : TermCtx Γ ∅)

→ (t : TermExpr)

→ Γ o ∅ | ∆ ` t : Nat-I `F `G

→ (s : TermExpr)

→ Γ o Φ | (weakenFunCtx-∆-∅ Φ ∆) ` s :

([:=]Vec-preserves-typing αs Ks (weakenFunCtx-∅-,++ αs `F) `Ks)

→ Γ o Φ | (weakenFunCtx-∆-∅ Φ ∆) ` app t [Ks] s :

([:=]Vec-preserves-typing αs Ks (weakenFunCtx-∅-,++ αs `G) `Ks)

map-I : ∀ {Γ : TCCtx} {g : N} {k : N}

→ {ϕ : FVar k}

→ {βs : Vec (FVar 0) k}

→ {γs : Vec (FVar 0) g}

→ {H F G : TypeExpr}

→ (`H : Γ o (∅ ,++ γs) ,, ϕ ` H)

90

→ (`F : Γ o (∅ ,++ (γs ++ βs)) ` F)

→ (`G : Γ o (∅ ,++ (γs ++ βs)) ` G)

→ Γ o ∅ | ∆∅ ` map F G H :

Nat-I {αs = []}

(Nat-I `F `G)

(Nat-I (so-subst-preserves-typing {αs = βs} `H (FunCtx-resp-++ γs βs `F))

(so-subst-preserves-typing {αs = βs} `H (FunCtx-resp-++ γs βs `G)))

in-I : ∀ {Γ : TCCtx} {k : N} {ϕ : FVar k} {αs βs : Vec (FVar 0) k}

→ {H : TypeExpr}

→ (`H : Γ o ((∅ ,++ αs) ,, ϕ) ` H)

→ Γ o ∅ | ∆∅ ` inn H :

Nat-I {αs = βs} (in-I-helper `H)

(µ-I `H (VarExprVec βs) (VarTypeVec βs))

fold-I : ∀ {Γ : TCCtx} {k : N} {ϕ : FVar k} {αs βs : Vec (FVar 0) k}

→ {H F : TypeExpr}

→ (`H : Γ o ((∅ ,++ αs) ,, ϕ) ` H)

→ (`F : Γ o (∅ ,++ βs) ` F)

→ Γ o ∅ | ∆∅ ` fold F H :

Nat-I {αs = []}

(Nat-I {αs = βs} (fold-I-helper `H `F) `F)

(Nat-I {αs = βs} (µ-I `H (VarExprVec βs) (VarTypeVec βs)) `F)

These constructors are given in the order of the inference rules in Figure 5.1 from top to bottom and

left to right. Although some of these constructors take many arguments, most of them do not require

much explanation. However, the types of the constructors L-I, app-I, map-I, in-I, and fold-I involve some

proofs about substitution and weakening that are used to show that the substituted and weakened types

appearing in the corresponding term inference rules are well-formed.

In particular, the conclusion of the inference rule for L implies that Γ; ∅ ` ∆, but in the term

judgment for t in that rule we have Γ;α ` ∆. This is justified by weakening each of the types in ∆ by

α, which is defined2 in Agda by:

2We elide the actual definitions of the functions in this section and just give their types. They are all implemented by

91

weakenFunCtx-∆-Vec : ∀ {k n : N} {Γ : TCCtx} {Φ : FunCtx} (ϕs : Vec (FVar k) n)

→ TermCtx Γ Φ

→ TermCtx Γ (Φ ,++ ϕs)

In the inference rule for term application, we have that Γ; ∅ ` ∆ in the term judgment for t, but we

have Γ; Φ ` ∆ in the conclusion, which is justified by weakening each of the types in ∆ by Φ. This is

defined in Agda by:

weakenFunCtx-∆-∅ : ∀ { Γ : TCCtx } → (Φ : FunCtx)

→ TermCtx Γ ∅

→ TermCtx Γ Φ

The inference rule for term application also involves substitution of vectors of types, so we must also

use the function [:=]Vec-preserves-typing defined in Section 2.6. We also use the function:

weakenFunCtx-∅-,++ : ∀ {k n} {Γ : TCCtx} {Φ : FunCtx} → (ϕs : Vec (FVar k) n)

→ {F : TypeExpr} → Γ o (∅ ,++ ϕs) ` F

→ Γ o (Φ ,++ ϕs) ` F

This function is used to weaken the typing judgment for F by the types in Φ in the type of app-I.

In the type of map-I, we use the vector concatenation ++ function3 to concatenate γs and βs.

This concatenation function is defined in the standard library as4:

++ : ∀ {m n} {A : Set} → Vec A m → Vec A n → Vec A (m + n)

Note that we are forced to use the vector concatenation function in the typing judgments for F and G

in the type of map-I. We cannot simply use the functorial context ((∅ ,++ γs) ,++ βs) because this

context does not have the form of (∅ ,++ αs) required to form the type Nat-I `F `G. The type of map-I

also uses the function so-subst-preserves-typing defined in Section 2.6 and the function

FunCtx-resp-++ : ∀ {Γ : TCCtx} {k j : N} (αs : Vec (FVar 0) k) (βs : Vec (FVar 0) j) {F : TypeExpr}

→ Γ o (∅ ,++ (αs ++ βs)) ` F

→ Γ o (∅ ,++ αs) ,++ βs ` F

pattern matching on their input typing judgment (or term context, for functions that take term contexts as their inputs)
and applying the appropriate weakening functions recursively.

3Note that this function is distinct from the concatenation function ,++ for type contexts and type variables, which
has a comma in its name.

4Here, + is the addition function for natural numbers.

92

that is required to ensure that the second-order substitution in the type of map-I is well-typed.

The types of in-I and fold-I use the functions

VarExprVec : ∀ {k} → Vec (FVar 0) k → Vec TypeExpr k

and

VarTypeVec : ∀ {k} {Γ : TCCtx} {Φ : FunCtx} → (βs : Vec (FVar 0) k)

→ foreach (λ β → Γ o Φ ,++ βs ` β) (VarExprVec βs)

to prove that each of the types in a vector βs is well-formed with respect to contexts Γ and Φ ,++ βs.

We also define the functions

in-I-helper : ∀ {Γ : TCCtx} {k : N} {ϕ : FVar k} {αs βs : Vec (FVar 0) k} {H : TypeExpr}

→ (`H : Γ o ((∅ ,++ αs) ,, ϕ) ` H)

→ Γ o (∅ ,++ βs) `

((H [ϕ :=[βs] (µ ϕ [λ αs , H] VarExprVec βs)]) [αs := VarExprVec βs]Vec)

and

fold-I-helper : ∀ {Γ : TCCtx} {k : N} {ϕ : FVar k} {αs βs : Vec (FVar 0) k}

→ {H : TypeExpr} → (`H : Γ o ((∅ ,++ αs) ,, ϕ) ` H)

→ {F : TypeExpr} → (`F : Γ o (∅ ,++ βs) ` F)

→ Γ o (∅ ,++ βs) ` (H [ϕ :=[βs] F]) [αs := VarExprVec βs]Vec

to prove that the substitutions in the rules for inn and fold are well-typed. The functions in-I-helper and

fold-I-helper are defined in terms of the weakening and substitution functions given here and in Chapter

2.

93

Chapter 6

Set Semantics of Terms

In this chapter we present the set semantics for the terms of N . To define the term semantics, we

must define the set interpretation of term contexts as a functor from the category of set environments

to the category of sets. The set interpretation of a term is a natural transformation from the functor

interpreting its term context to the functor interpreting its type.

Given a non-functorial context Γ, a functorial context Φ, and a term context ∆ = x1 : F1, ..., xn : Fn

with Γ; Φ ` ∆, we define the set interpretation of ∆ as the n-ary product of the functors interpreting

the types in F1, ..., Fn:

JΓ; Φ ` ∆KSet : SetEnvCat→ Sets

JΓ; Φ ` ∆KSet = JΓ; Φ ` F1KSet × ...× JΓ; Φ ` FnKSet

Given a term judgment Γ; Φ |∆ ` t : F , we define its set interpretation as a natural transformation:

JΓ; Φ |∆ ` t : F KSet : JΓ; Φ ` ∆KSet ⇒ JΓ; Φ ` F KSet

Thus for each set environment ρ, the set interpretation of Γ; Φ |∆ ` t : F in ρ is a function from

JΓ; Φ ` ∆KSetρ to JΓ; Φ ` F KSetρ. The set interpretations for the terms of N are defined in Figure 6.1.

All of the term interpretations described here are given with respect to a set environment ρ. Term

variables are interpreted by projecting out the set corresponding to x : F in the product given by

JΓ; Φ ` ∆, x : F KSetρ. A term of the form ⊥F t is interpreted by composing the unique morphism

94

JΓ; Φ |∆, x : F ` x : F KSetρ = π|∆|+1

JΓ; Φ |∆ ` ⊥F t : F KSetρ = !0JΓ;Φ`F KSetρ ◦ JΓ; Φ | ∆ ` t : 0KSetρ, where

!0JΓ;Φ`F KSetρ is the unique morphism from 0

to JΓ; Φ ` F KSetρ
JΓ; Φ |∆ ` > : 1KSetρ = !

JΓ;Φ`∆KSetρ
1 , where !

JΓ;Φ`∆KSetρ
1

is the unique morphism from JΓ; Φ ` ∆KSetρ to 1
JΓ; Φ |∆ ` (s, t) : F ×GKSetρ = JΓ; Φ |∆ ` s : F KSetρ× JΓ; Φ |∆ ` t : GKSetρ
JΓ; Φ |∆ ` π1t : F KSetρ = π1 ◦ JΓ; Φ |∆ ` t : F ×GKSetρ
JΓ; Φ |∆ ` π2t : GKSetρ = π2 ◦ JΓ; Φ |∆ ` t : F ×GKSetρ
JΓ; Φ | ∆ ` case t of {x 7→ l; y 7→ r} : KKSetρ = eval ◦ 〈curry [JΓ; Φ |∆, x : F ` l : KKSetρ,

JΓ; Φ |∆, y : G ` r : KKSetρ],
JΓ; Φ |∆ ` t : F +GKSetρ〉

JΓ; Φ |∆ ` inl s : F +GKSetρ = inl ◦ JΓ; Φ |∆ ` s : F KSetρ
JΓ; Φ |∆ ` inr t : F +GKSetρ = inr ◦ JΓ; Φ |∆ ` t : GKSetρ
JΓ; ∅ |∆ ` Lαx.t : Natα F GKSetρ = curry(JΓ;α |∆, x : F ` t : GKSetρ[α :=])

JΓ; Φ |∆ ` tKs : G[α := K]KSetρ = eval ◦ 〈λd. (JΓ; ∅ |∆ ` t : Natα F GKSetρ d)JΓ;Φ`KKSetρ,

JΓ; Φ |∆ ` s : F [α := K]KSetρ〉

JΓ; ∅ | ∅ ` mapF,GH : Nat∅(Natβ,γF G) = λd η C. JΓ;ϕ, γ ` HKSetidρ[γ:=C][ϕ := λB.ηBC]

(Natγ H[ϕ :=β F]H[ϕ :=β G])KSetρ
JΓ; ∅ | ∅ ` inH : Natβ H[ϕ := (µϕ.λα.H)β][α := β] = λd. inTSetH,ρ

(µϕ.λα.H)βKSetρ
JΓ; ∅ | ∅ ` foldFH : Nat∅ (Natβ H[ϕ :=β F][α := β]F) = λd. foldTSetH,ρ

(Natβ (µϕ.λα.H)β F)KSetρ

Figure 6.1: Term semantics

95

!0JΓ;Φ`F KSetρ from the empty set to the set interpretation of Γ; Φ ` F with respect to ρ with the term

interpretation JΓ; Φ |∆ ` t : 0KSetρ. The term > is interpreted as the unique morphism !
JΓ;Φ`∆KSetρ
1

from the set interpretation JΓ; Φ ` ∆KSetρ of the term context ∆ into the singleton set 1. A term

of the form (s, t) is interpreted as the product of the term interpretations JΓ; Φ |∆ ` s : F KSetρ and

JΓ; Φ |∆ ` t : GKSetρ. A term of the form π1t is interpreted by composing the projection function

π1 : A × B → A, with the term interpretation JΓ; Φ |∆ ` t : F ×GKSetρ. The projection function π1

takes a pair and projects out its first component. The intepretation for a term of the form π2 t is defined

analogously by the projection function π2 : A × B → B. A term of the form case t of {x 7→ l; y 7→ r}

is interpreted in terms of the sum of two term interpretations. The sum of functions f : A → C and

g : B → C is denoted [f, g] : (A + B) → C, and it is defined by case analysis. If the input to [f, g]

comes from the left summand A, then f is applied to this input. Otherwise the input must come from

the right summand B, in which case g is applied. A term of the form inl s is interpreted by composing

the injection inl : A → A + B with the term interpretation JΓ; Φ |∆ ` s : F KSetρ. A term of the form

inr t is interpreted analogously in terms of the injection inr : B → A+B. A term of the form Lα x.t is

interpreted by applying a form of currying to the natural transformation

JΓ;α |∆, x : F ` t : GKSetρ[α :=] : JΓ;α ` ∆KSetρ[α :=]×JΓ;α ` F KSetρ[α :=]⇒ JΓ;α ` GKSetρ[α :=]

to get a natural transformation of type

JΓ;α ` F KSetρ[α :=]⇒ JΓ;α ` GKSetρ[α :=] (6.1)

i.e., an element of JΓ; ∅ ` NatαF GKSetρ. A term of the form tKs is interpreted by first interpreting

Γ; ∅ |∆ ` t : NatαF G with respect to ρ to get a natural transformation of type (6.1). Then the

component of this natural transformation at JΓ; Φ ` KKSetρ is applied to the term interpretation of

Γ; Φ |∆ ` s : F [α := K] with respect to ρ. A term of the form mapF,GH is interpreted as the action of

the set interpretation JΓ;ϕ, γ ` HKSet on morphisms applied to the morphism of environments:

idρ[γ:=C][ϕ := λB.ηBC] : ρ[γ := C][ϕ := λB.JΓ;β, γ ` F KSetρ[β := B][γ := C]]

→ ρ[γ := C][ϕ := λB.JΓ;β, γ ` GKSetρ[β := B][γ := C]]

A term of the form inH is interpreted as the natural transformation inT Set
H,ρ

: T Set
H,ρ(µT

Set
H,ρ) ⇒ µT Set

H,ρ

96

associated with the higher-order functor T Set
H,ρ : [Setsk, Sets] → [Setsk, Sets]. A term of the form foldFH

is interpreted as the natural transformation foldT Set
H,ρ

associated with T Set
H,ρ. It takes a natural transfor-

mation η : T Set
H,ρF ⇒ F and produces the natural transformation foldT Set

H,ρ
η : µT Set

H,ρ ⇒ F , where F is a

functor of type Setsk → Sets. Note that terms of the form mapF,GH , inH and foldFH are all formed with

respect to empty term contexts (denoted by ∅), so they ignore their inputs d of type JΓ; ∅ ` ∅KSet = 1.

For the term interpretations in Figure 6.1 to be well-defined, we must prove that the set interpreta-

tion of types respects substitution and weakening, i.e., we must prove the following lemmas:

JΓ; Φ ` G[α := K]KSetρ = JΓ; Φ, α ` GKSetρ[α := JΓ; Φ ` KKSetρ] (6.2)

JΓ; Φ ` F [ϕ := H]KSetρ = JΓ; Φ, ϕ ` F KSetρ[ϕ := λA. JΓ; Φ, α ` HKSetρ[α := A]] (6.3)

These lemmas express that the interpretation of a type with a substitution is equal to the interpretation

of the un-substituted type in an appropriately extended environment. In other words, if we have some

variables that we would like to replace in the interpretation of a type, we can do this at either the

syntactic level or at the semantic level and get the same result. We must also prove analogous lemmas

for weakening, i.e., if Γ; Φ ` F , then

JΓ; Φ ` F KSet = JΓ; Φ, ϕ ` F KSet (6.4)

JΓ; Φ ` F KSet = JΓ, ϕ; Φ ` F KSet (6.5)

To see why these lemmas are needed, consider the interpretation of a term tKs. The interpretation

of Γ; ∅ |∆ ` t : NatαF G gives a natural transformation of the type in (6.1), but the interpretation of

Γ; Φ |∆ ` s : F [α := K] gives an element of JΓ; Φ ` F [α := K]KSet. In order to apply the component

(JΓ; ∅ |∆ ` t : NatαF GKSetρ d)JΓ;Φ`KKSetρ

of type

JΓ;α ` F KSetρ[α := JΓ; Φ ` KKSetρ]→ JΓ;α ` GKSetρ[α := JΓ; Φ ` KKSetρ]

to the term interpretation JΓ; Φ |∆ ` s : F [α := K]KSetρ d, we must have that

JΓ; Φ ` F [α := K]KSetρ = JΓ;α ` F KSetρ[α := JΓ; Φ ` KKSetρ]

97

6.1 Set Semantics of Terms in Agda

In this section, we give a partial definition of the set semantics of terms and discuss some limitations

with our approach. We define the interpretation of term contexts in Agda by pattern matching:

ContextInterp : ∀ {Γ : TCCtx} {Φ : FunCtx} → TermCtx Γ Φ → Functor SetEnvCat Sets

ContextInterp ∆∅ = ConstF >’

ContextInterp (∆ ,- : `F 〈 〉) = ContextInterp ∆ ×Set SetSem `F

An empty context is interpreted as a constant functor that sends every environment to the singleton

set >’ 1 and every morphism of environments to the identity function on >’. A non-empty context is

interpreted as the product of ContextInterp ∆ and SetSem`F, where ×Set is defined by:

×Set : ∀ {o ` e} {C : Category o ` e} → (F G : Functor C Sets) → Functor C Sets

F ×Set G = SetProd ◦F (F ※ G)

Given two functors F and G, (F×Set G) takes an object (resp., morphism) of C and applies both F and

G to get a pair of objects (resp., morphisms) and then takes the cartesian product of the pair.

The set interpretation of terms is defined by:

TermSetSem : ∀ {Γ : TCCtx} {Φ : FunCtx} {∆ : TermCtx Γ Φ}

→ {F : TypeExpr} → {`F : Γ o Φ ` F}

→ {t : TermExpr}

→ (`t : Γ o Φ | ∆ ` t : `F)

→ NaturalTransformation (ContextInterp ∆) (SetSem `F)

The set interpretation of term variables is defined by:

TermSetSem (var-I ∆ x `F p) = var-interp ∆ {x} `F {p = p}

var-interp : ∀ {Γ : TCCtx} {Φ : FunCtx}

→ (∆ : TermCtx Γ Φ) {x : TermId}

→ {F : TypeExpr} (`F : Γ o Φ ` F)

→ {p : isYes (∆-lookup x ∆) ≡ false}

1Here we rename the unit type > in Agda to >’ to avoid confusion with the N term >. For the same reason, we
rename the empty type ⊥ to ⊥’.

98

→ NaturalTransformation (ContextInterp (∆ ,- x : `F 〈 p 〉))

(SetSem `F)

var-interp ∆ `F = proj2Nat {F = ContextInterp ∆} {G = SetSem `F}

The function var-interp produces a natural transformation that projects out the type for the variable x

from a context. It is defined in terms of proj2Nat, which is defined by:

proj2Nat : ∀ {F G : Functor C Sets} → NaturalTransformation (F ×Set G) G

A component of proj2Nat {F} {G} takes a pair as input and returns the second component of the pair.

The proofs of naturality are defined by straightforward pattern matching.

The set interpretation of ⊥e-I is defined by a composition of natural transformations:

TermSetSem (⊥e-I t `t) = 0! ◦v TermSetSem `t

The natural transformation 0! is defined by:

0! : ∀ {F : Functor C Sets} → NaturalTransformation (ConstF ⊥’) F

0! = record { η = λ → exFalso ; commute = λ f → λ {} ; sym-commute = λ f → λ {} }

Each component of 0! has ⊥’ as its input type, so we define the components by exFalso. The naturality

proofs are defined by pattern matching on ⊥’ using the absurd lambda pattern2.

The set interpretation of >-I is defined by:

TermSetSem (>-I) = 1!

The natural transformation 1! is defined by:

1! : ∀ {F : Functor C Sets} → NaturalTransformation F (ConstF >’)

1! = record { η = λ → const tt ; commute = λ f → ≡.refl ; sym-commute = λ f → ≡.refl }

Each component of 1! is defined by sending its input to the single element tt of >’.

The set interpretation of pair-I is defined by:

TermSetSem (pair-I `F `G `s `t) = prod-Nat (TermSetSem `s) (TermSetSem `t)

The function prod-Nat is defined by:

2The absurd lambda here is written λ{} rather than λ() because the argument of type ⊥’ is implicit.

99

prod-Nat : ∀ {F G H : Functor C Sets}

→ NaturalTransformation F G

→ NaturalTransformation F H

→ NaturalTransformation F ((G ×Set H))

It takes a pair of natural transformations with the same domain F and produces a natural transformation

from F into the product of G and H. Each component of prod-Nat is defined by applying the two input

natural transformations to produce a pair. The naturality proofs are defined by applying the naturality

proofs of the input natural transformations componentwise.

The set interpretations of π1-I and π2-I are defined by:

TermSetSem (π1-I `G t `t) = proj1Nat ◦v TermSetSem `t

TermSetSem (π2-I `F t `t) = proj2Nat ◦v TermSetSem `t

The natural transformation proj2Nat is defined above, and the natural transformation proj1Nat is defined

analogously. That is, each of its components is defined by projecting out the first component of a pair.

The set interpretations of inl and inr are defined by compositions:

TermSetSem (inl-I `F `G t `t) = inl-Nat ◦v TermSetSem `t

TermSetSem (inr-I `F `G t `t) = inr-Nat ◦v TermSetSem `t

inl-Nat : ∀ {F G : Functor C Sets} → NaturalTransformation F ((F +Set G))

inr-Nat : ∀ {F G : Functor C Sets} → NaturalTransformation G ((F +Set G))

Here, the components of inl-Nat and inr-Nat are defined by the injections inj1 and inj2 of the sum type,

and the naturality proofs are trivial. The function +Set

+Set : ∀ {o ` e} {C : Category o ` e} → (F G : Functor C Sets) → Functor C Sets

F +Set G = SetSum ◦F (F ※ G)

is the analogue for sum types of ×Set defined above for product types.

The set interpretation of case-I is slightly more involved and is defined by:

TermSetSem (case-I ∆ `F `G `K `t `l `r) =

let J∆K : Functor SetEnvCat Sets

100

J∆K = ContextInterp ∆

JFK : Functor SetEnvCat Sets

JFK = SetSem `F

JGK : Functor SetEnvCat Sets

JGK = SetSem `G

[l,r] : NaturalTransformation ((J∆K ×Set JFK) +Set (J∆K ×Set JGK)) (SetSem `K)

[l,r] = sum-Nat (TermSetSem `l) (TermSetSem `r)

distr : NaturalTransformation (J∆K ×Set (JFK +Set JGK))

((J∆K ×Set JFK) +Set (J∆K ×Set JGK))

distr = ×Set-distr J∆K JFK JGK

semt : NaturalTransformation J∆K (JFK +Set JGK)

semt = TermSetSem `t

J∆K×tsem : NaturalTransformation J∆K (J∆K ×Set (JFK +Set JGK))

J∆K×tsem = prod-Nat idnat (TermSetSem `t)

in [l,r] ◦v distr ◦v J∆K×tsem

It is defined by composing three natural transformation to produce a natural transformation of type

NaturalTransformation (ContextInterp ∆) (SetSem `K). We first use sum-Nat on the interpretations of `l

and `r. The function sum-Nat

sum-Nat : ∀ {F G H : Functor C Sets}

→ NaturalTransformation F H

→ NaturalTransformation G H

→ NaturalTransformation ((F +Set G)) H

takes two natural transformations with a common codomain H and returns a natural transformation

from the sum of functors F +Set G to the functor H. Given two natural transformations η1 and η2,

each component of sum-Nat η1 η2 is defined by case analysis, applying η1 if the input is from the left

summand and applying η2 is the input is from the right summand. We also use the function ×Set-distr

defined by:

101

×Set-distr : ∀ {o ` e} {C : Category o ` e} → (F G H : Functor C Sets)

→ NaturalTransformation (F ×Set (G +Set H)) ((F ×Set G) +Set (F ×Set H))

It produces a natural transformation that distributes ×Set over +Set. Each of its components is defined

by pattern matching and repackaging its inputs into the appropriate shape. This natural transformation

does not really change its input data. It is just required as an intermediate step to make the types

line up. The last natural transformation J∆K×tsem used in the intepretation of case-I is defined by the

function prod-Nat inroduced above. Each of its components is defined by taking an element d of J∆K

and returning a pair (d, t), where t is obtained by applying the interpretation of `t to the input d.

The term intepretation for L-I is defined by:

TermSetSem (L-I `F `G ∆ `t) = curryNatType `F `G (TermSetSem `t)

curryNatType : ∀ {Γ Φ} {∆ : TermCtx Γ ∅} {k} {αs : Vec (FVar 0) k} {F} {G}

→ (`F : Γ o ∅ ,++ αs ` F) (`G : Γ o ∅ ,++ αs ` G)

→ NaturalTransformation

(ContextInterp (weakenFunCtx-∆-Vec αs ∆) ×Set SetSem `F)

(SetSem `G)

→ NaturalTransformation (ContextInterp ∆) (SetSem (Nat-I `F `G))

The function curryNatType takes a natural transformation given by interpreting `t and returns a natural

transformation from ContextInterp ∆ to SetSem (Nat-I`F`G) = NatTypeFunctorαs`F`G. To do so, it

first uses a proof that the interpretation of term contexts respects weakening to change the domain

of its input natural transformation from ContextInterp (weakenFunCtx-∆-Vecαs ∆) ×Set (SetSem`F)

to ContextInterp ∆ ×Set (SetSem`F). Each component of the natural transformation returned by

curryNatType takes a set environment ρ and an element of Functor.F0 (ContextInterp ∆) ρ and returns a

natural transformation. Such a component is defined by whiskering the natural transformation obtained

by weakening with the environment extension functor extendSetEnv-αs αs ρ : Functor (Setsˆ k) SetEnvCat

used in the interpretation of Nat types. The whiskering used here is defined in the agda-categories library

by:

◦r : ∀ {o ` e o’ `’ e’ o” `” e”}

→ {C : Category o ` e} {D : Category o’ `’ e’} {E : Category o” `” e”}

102

→ {G H : Functor D E} → NaturalTransformation G H → (F : Functor C D)

→ NaturalTransformation (G ◦F F) (H ◦F F)

The component of a natural transformation η ◦r F at an object X is defined by the component of η at

the object Functor.F0 F X. This gives a natural transformation from

(ContextInterp ∆ ×Set (SetSem`F)) ◦F extendSetEnv-αs αs ρ

to

(SetSem`G) ◦F extendSetEnv-αs αs ρ

We also have a proof that functor composition distributes over ×Set, so we can turn this into a natural

transformation from

((ContextInterp ∆) ◦F extendSetEnv-αs αs ρ) ×Set ((SetSem`F) ◦F extendSetEnv-αs αs ρ)

to

(SetSem`G) ◦F extendSetEnv-αs αs ρ

Since ∆ is formed with an empty functorial context, any environment extension of functorial variables

has no effect on its interpretation. That is, for every ρ : SetEnv,

Functor.F0 (ContextInterp ∆)ρ ≡ Functor.F0 (ContextInterp ∆)(ρ[αs :fvs= ...])

no matter what the variables in αs are replaced by. Therefore the functor

(ContextInterp ∆) ◦F extendSetEnv-αs αs ρ

from Setsˆ k to Sets is equivalent (naturally isomorphic) to

ConstF (Functor.F0(ContextInterp ∆)ρ)

Since we have an element of Functor.F0 (ContextInterp ∆) ρ at hand, we can complete the definition using

the function

103

makeNat : ∀ {o ` e} {C : Category o ` e}

→ (F G : Functor C Sets)

→ (D : Set)

→ (d : D)

→ NaturalTransformation (ConstF D ×Set F) G

→ NaturalTransformation F G

makeNat F G D d η = η ◦v apply-d

where apply-d : NaturalTransformation F (ConstF D ×Set F)

apply-d = prod-Nat (toConstF F D d) idnat

toConstF : NaturalTransformation F (ConstF D)

toConstF = record { η = λ X x → d ; commute = λ f → ≡.refl ; sym-commute = λ f → ≡.refl }

on our natural transformation from

(ConstF (Functor.F0(ContextInterp ∆) ρ)) ×Set ((SetSem`F) ◦F extendSetEnv-αs αs ρ)

to

(SetSem`G) ◦F extendSetEnv-αs αs ρ

This yields a natural transformation from

(SetSem`F) ◦F extendSetEnv-αs αs ρ

to

(SetSem`G) ◦F extendSetEnv-αs αs ρ

as desired. The naturality proofs for curryNatType are straightforward because the action of

NatTypeFunctorαs`F`G on morphisms of environments always gives identity morphisms.

6.1.1 Interpreting the Remaining Terms

To define the set interpretations for app-I, map-I, in-I and fold-I, we need proofs that (syntactic) sub-

stitution and weakening interact nicely with (semantic) environment extension. In particular, we need

to formalize Equations 6.2, 6.3, 6.4, and 6.5 in Agda. The proofs for weakening (Equations 6.4 and

104

6.5) are straightforward enough because the weakening functions we defined in Section 2.5 do not really

change their input typing judgments in the sense that they only add new variables to the contexts.

The contexts themselves have no bearing on the set interpretation of types3 so weakening a typing

judgment does not change its set interpretation. However, proving Equations 6.2 and 6.3 in Agda is not

so straightforward because a substitution can change the interpretation of a type, and there are also

environment extensions involved. We can prove Equation 6.2 for a substitution of a single variable, i.e.,

JΓ; Φ ` G[α := K]KSetρ = JΓ; Φ, α ` GKSetρ[α := JΓ; Φ ` KKSetρ]

but this does not suffice to define all of the remaining terms. The obstacle we run into with vectors of

variables, e.g., as in

JΓ; Φ ` G[α := K]KSetρ = JΓ; Φ, α ` GKSetρ[α := JΓ; Φ ` KKSetρ]

is that we need to know that the variables in α are disjoint from those in Φ, i.e., that the types in K do

not depend on the variables in α. This issue arises because vector substitution is defined by induction,

so if we have variables α1, α2 and types K1,K2, then

G[α1, α2 := K1,K2] = (G[α2 := K2])[α1 := K1]

Semantically, this gives

JΓ; Φ ` (G[α2 := K2])[α1 := K1]KSetρ

= JΓ; Φ, α1 ` (G[α2 := K2])KSetρ[α1 := JΓ; Φ ` K1KSetρ]

= JΓ; Φ, α1, α2 ` GKSet(ρ[α1 := JΓ; Φ ` K1KSetρ])[α2 := JΓ; Φ ` K2KSet(ρ[α1 := JΓ; Φ ` K1KSetρ])]

The environment extension we really want however is

JΓ; Φ, α1, α2 ` GKSet(ρ[α1 := JΓ; Φ ` K1KSetρ])[α2 := JΓ; Φ ` K2KSetρ]

where α2 is mapped to JΓ; Φ ` K2KSetρ rather than JΓ; Φ ` K2KSet(ρ[α1 := JΓ; Φ ` K1KSetρ]). If we know

3It is true that for type application, we must know that the variable ϕ being applied appears in one of the contexts.
But the particular proof of ϕ appearing in a context is not important and does not affect the set interpretation of types.

105

that K2 is really not using the variables in α, then these two set interpretation of K2 are equivalent.

But when we formalized type variable contexts in Agda, we did not have the foresight to consider this

issue, and so we do not currently have a mechanism for proving

JΓ; Φ ` K2KSetρ = JΓ; Φ ` K2KSet(ρ[α1 := JΓ; Φ ` K1KSetρ])

in Agda. For these reasons, we leave the formalization of the term interpretations for app-I, map-I, in-I

and fold-I for future work.

106

Chapter 7

Relation Semantics of Types

In this chapter we present the relation semantics of types from [5] for the calculus N and formalize this

semantics in Agda. The relation semantics of types is given in parallel to the set interpretation of types.

That is, for each construct (e.g., set environments) used in the set semantics there is a corresponding

construct (e.g., relation environments) in the relation semantics. The relation semantics of types is

also defined mutually recursively with the set interpretation of types because of the relation-preserving

condition in the set interpretation of Nat types.

7.1 Relations and Relation Transformers

A relation over sets A and B is a subset of the cartesian product A×B. We write R : Rel(A,B) to denote

that R is a relation over A and B and sometimes use the notation (A,B,R) to denote this relation. For

a relation R : Rel(A,B), we refer to A as the domain of R and B as the codomain of R. We sometimes

write π1R and π2R for the domain and codomain of R, respectively. Given a relation R : Rel(A,B) and

elements x ∈ A and y ∈ B, we say x and y are related if the pair (x, y) is included in the subset of A×B

given by R. We denote this by (x, y) ∈ R. The equality relation EqX : Rel(X,X) for a set X only relates

elements of X to themselves, i.e, EqX = {(x, x) |x ∈ X}. A morphism of relations from R : Rel(A,B)

to S : Rel(C,D) is a pair of functions (f1 : A→ C, f2 : B → D) such that, for every pair (x, y) related

in R, the pair (f1x, f2 y) is related in S. In other words, f1 and f2 must preserve related elements.

Composition of morphisms is defined componentwise, i.e., (g1, g2) ◦ (f1, f2) = (g1 ◦ f1, g2 ◦ f2). An

identity morphism of relations is given by a pair of identity functions. These data yield a category of

relations, which we denote by Rels.

107

7.1.1 Relation Transformers

Before defining relation environments and the relational interpretation of types, some setup is required

to define the relational analogues of set functors. Rather than simply using functors of relations in place

of functors of sets, we require some extra structure on our functors of relations. This extra structure

is defined in terms of relation transformers, and it is necessary to ensure that the relation semantics is

“over” the set semantics in the sense that the relational interpretation of types relates elements of the

set interpretation of types (see Lemma 7.4.1). The following definitions come directly from [5], with

some minor changes in terminology.

Definition 7.1.1. A k-ary relation transformer F is a triple (F 1, F 2, F ∗), where

• F 1, F 2 : [Setk, Set] and F ∗ : [Relk,Rel] are functors

• If R1 : Rel(A1, B1), ..., Rk : Rel(Ak, Bk), then F ∗R : Rel(F 1A,F 2B)

• If (α1, β1) ∈ Rels(R1, S1), ..., (αk, βk) ∈ Rels(Rk, Sk) then F ∗(α, β) = (F 1α, F 2β)

Recall that the notation m ∈ Rels(R,S) indicates that m is a morphism in the category Rels from R to

S. The last clause of Definition 7.1.1 expands to: if (a, b) ∈ R implies (αa, β b) ∈ S then (c, d) ∈ F ∗R

implies (F 1α c, F 2β d) ∈ F ∗S. When convenient we identify a 0-ary relation transformer (A,B,R) with

R : Rel(A,B), and write π1F for F 1 and π2F for F 2.

A relation transformer can be thought of as a functor of relations F ∗ with extra structure defined

by two functors of sets. The action of F ∗ on objects gives relations that are “over” the sets given by the

actions of F 1 and F 2 on objects, and the action of F ∗ on morphisms is given precisely by the actions

of F 1 and F 2 on morphisms. If F ∗ is the third component of a relation transformer, then F 1 and F 2

are uniquely determined, but not every functor of relations can be made into the third component of a

relation transformer.

Definition 7.1.2. The category RTk of k-ary relation transformers is given by the following data:

• An object of RTk is a k-ary relation transformer

• A morphism δ : (G1, G2, G∗)→ (H1, H2, H∗) in RTk is a pair of natural transformations (δ1, δ2),

where δ1 : G1 ⇒ H1 and δ2 : G2 ⇒ H2, such that, for all R : Rel(A,B), if (x, y) ∈ G∗R then

(δ1
A
x, δ2

B
y) ∈ H∗R

108

• Identity morphisms and composition are inherited from the category of functors on Sets

We also have a notion of higher-order relation transformers, which are analogous to higher-order

functors of sets:

Definition 7.1.3. A k-ary higher-order relation transformer H is a triple H = (H1, H2, H∗), where

• H1 and H2 are functors from [Setsk, Sets] to [Setsk, Sets]

• H∗ is a functor from RTk to [Relk,Rel]

• For all R : Rel(A,B), π1((H∗(δ1, δ2))R) = (H1δ1)A and π2((H∗(δ1, δ2))R) = (H2δ2)B

• The action of H on relation transformers is given by

H (F 1, F 2, F ∗) = (H1F 1, H2F 2, H∗(F 1, F 2, F ∗))

• The action of H on morphisms of relation transformers is given by H (δ1, δ2) = (H1δ1, H2δ2) for

(δ1, δ2) : (F 1, F 2, F ∗)→ (G1, G2, G∗)

A higher-order relation transformer can be thought of as an endofunctor on RTk with extra structure.

Since the result of applying a higher-order relation transformer H to k-ary relation transformers and

morphisms between them must again be k-ary relation transformers and morphisms between them,

respectively, Definition 7.1.3 implicitly requires that the following three conditions hold:

• H∗(F 1, F 2, F ∗)R : Rel(H1F 1A,H2F 2B) whenever R1 : Rel(A1, B1), ..., Rk : Rel(Ak, Bk)

• H∗(F 1, F 2, F ∗) (α, β) = (H1F 1α,H2F 2β)

whenever (α1, β1) ∈ Rels(R1, S1), ..., (αk, βk) ∈ Rels(Rk, Sk)

• If (δ1, δ2) : (F 1, F 2, F ∗)→ (G1, G2, G∗) and R1 : Rel(A1, B1), ..., Rk : Rel(Ak, Bk),

then ((H1δ1)Ax, (H
2δ2)By) ∈ H∗(G1, G2, G∗)R whenever (x, y) ∈ H∗(F 1, F 2, F ∗)R

Note, however, that this last condition is automatically satisfied because it is implied by the third bullet

point of Definition 7.1.3. Higher-order relation transformers also form a category, denoted HRTk .

Definition 7.1.4. For higher-order relation transformers H and K, a morphism σ : H → K is a pair

σ = (σ1, σ2), where σ1 : H1 ⇒ K1 and σ2 : H2 ⇒ K2 are natural transformations between endofunctors

on [Setk, Set] and the component of σ at F = (F 1, F 2, F ∗) ∈ RTk is given by σF = (σ1
F 1 , σ2

F 2). This

entails that σiF i is natural in F i : [Setk, Set], and, for every F , both (σ1
F 1)A and (σ2

F 2)A are natural in

109

A. Moreover, since the results of applying σ to k-ary relation transformers must be morphisms of k-ary

relation transformers, this definition implicitly requires that (σF)R = ((σ1
F 1)A, (σ

2
F 2)B) is a morphism

in Rel for any k-tuple of relations R : Rel(A,B), i.e., that if (x, y) ∈ H∗FR, then ((σ1
F 1)Ax, (σ

2
F 2)By) ∈

K∗FR.

7.2 Relations and Relation Transformers in Agda

Relations as defined above are proof-irrelevant, i.e., two elements are either related (included in the

subset) or they are not. In other words, relations as defined above do not support a notion of having

multiple proofs of (x, y) ∈ R. A proof-relevant relation R : Rel(A,B) may have multiple proofs of

(x, y) ∈ R for a particular x and y. Note that proof-relevant relations cannot be defined simply as

subsets of cartesian products because such subsets cannot contain multiple occurrences of the same pair

(x, y).

In our Agda formalization, we use proof-relevant relations to define the relation semantics of types,

as proof-relevant relations are much easier to manipulate in Agda than proof-irrelevant ones. A proof-

relevant relation is defined in Agda as a binary function with a return type of Set:

REL : Set → Set → Set1

REL A B = A → B → Set

The return type of the function REL1 itself is Set1 because the definition of REL involves the type Set.

Given a relation R : REL A B and elements x : A and y : B, the type R x y gives the set of proofs that x

and y are related. We define a shorthand for this type by:

, ∈ : ∀ {A B : Set} → A → B → REL A B → Set

x , y ∈ R = R x y

To implement proof-irrelevant relations in Agda, we could use functions of type A→ B→ Bool,

where two elements x and y are considered related by R : A→ B→ Bool iff R x y ≡ true, but manipulating

these equality proofs is cumbersome. There are other ways we could define proof-irrelevant relations as

well.

1We use capital letters for REL because Rel is already defined in Agda as the type of homogeneous relations, i.e.,
Rel A = A→ A→ Set.

110

In order to package all of the data defining a relation into a single type, we define the record type

RelObj:

record RelObj : Set1 where

constructor R[, ,]

field

fst : Set

snd : Set

rel : REL fst snd

open RelObj

An element R of RelObj is defined by a set fst R for the domain, a set snd R for the codomain, and

a relation rel R on fst R and snd R. The statement open RelObj brings the fields fst : RelObj → Set,

snd : RelObj → Set and rel : (R : RelObj)→ REL (fst R) (snd R) into scope so they can be used in other

definitions.

We define morphisms of relations by the record type:

record RelMorph (R S : RelObj) : Set1 where

constructor RM[, ,]

field

mfst : fst R → fst S

msnd : snd R → snd S

preserves : preservesRelObj R S mfst msnd

A morphism of relations consists of a pair of functions mfst and msnd and a proof that these functions

preserve related elements, defined by the function preservesRelObj:

preservesRelObj : ∀ (R R’ : RelObj)

→ (f : fst R → fst R’) → (f2 : snd R → snd R’) → Set

preservesRelObj R R’ f1 f2 = ∀ {x : fst R} {y : snd R} → (x , y ∈ rel R) → (f1 x , f2 y ∈ rel R’)

The type preservesRelObj R R’ f1 f2 asserts that for every x : fst R and y : snd R, a proof of x,y ∈ R implies

(f1 x , f2 y) ∈ R’. Composition for morphisms of relations is defined by:

111

◦RelM : ∀ {R S T : RelObj} → RelMorph S T → RelMorph R S → RelMorph R T

(RM[g1 , g2 , pg]) ◦RelM (RM[f1 , f2 , pf]) = RM[(g1 ◦’ f1) , (g2 ◦’ f2) , (pg ◦’ pf)]

The functions for mfst and msnd are composed componentwise using function composition2. The proof

that these compositions preserve related elements is defined by composing

pg : ∀{x : fst S}{y : snd S} → (x , y ∈ rel S)→ (g1 x , g2y ∈ rel T)

and

pf : ∀{x : fst R}{y : snd R} → (x , y ∈ rel R)→ (f1 x , f2 y ∈ rel S)

to get a proof of type:

∀{x : fst R}{y : snd R} → (x , y ∈ rel R)→ (g1 (f1 x) , g2 (f2 y) ∈ rel T)

The identity morphisms of relations are defined by:

idRelMorph : ∀ {R} → RelMorph R R

idRelMorph = RM[idf , idf , idf]

The category of relations is defined in Agda by:

Rels : Category (lsuc lzero) (lsuc lzero) lzero

Rels = record

{ Obj = RelObj

; ⇒ = RelMorph

; ≈ = λ f g → (mfst f Sets.≈ mfst g) ×’ (msnd f Sets.≈ msnd g)

; id = idRelMorph

; ◦ = ◦RelM

...

}

Two morphisms of relations are considered equivalent if their component functions are equivalent in

the category of sets. Note that the proofs of relation preservation are not considered when comparing

2We rename the composition function from the standard library from ◦ to ◦ ’ to distinguish it from the composition
function associated with each category.

112

two morphisms for equality. The remaining fields are elided because they are given componentwise by

the corresponding fields of Sets.

We give names to the k-ary product of Rels and the category of functors from the k-ary product of

Rels to Rels :

Relsˆ : N → Category (lsuc lzero) (lsuc lzero) lzero

Relsˆ k = Catˆ Rels k

[Relsˆ ,Rels] : N → Category (lsuc lzero) (lsuc lzero) (lsuc lzero)

[Relsˆ k ,Rels] = Functors (Relsˆ k) Rels

We define the equality relation associated to each set by:

EqRelObj : Set → RelObj

EqRelObj X = R[X , X , ≡]
(11)

The third component of EqRelObj is given by the propositional equality type ≡ , which means two

elements of X are related iff they are identical, as desired.

7.2.1 Relation Transformers in Agda

In this section we formalize the definitions of relation transformers and higher-order relation transform-

ers in Agda. We use slightly different definitions than those given in Section 7.1.1 to make relation

transformers easier to work with in Agda. The alternative definitions we give are equivalent to those

in Section 7.1.1. We first present the direct translations into Agda of the definitions in Section 7.1.1 to

illustrate why we choose to give alternative definitions.

The type of relation transformers is defined in Agda by:

113

record RTObj (k : N) : Set1 where

open Category Sets using (≈)

field

F1 : Functor (Setsˆ k) Sets

F2 : Functor (Setsˆ k) Sets

F* : Functor (Relsˆ k) Rels

over-rels1 : ∀ (Rs : Vec RelObj k) → fst (Functor.F0 F* Rs) ≡ Functor.F0 F1 (vecfst Rs)

over-rels2 : ∀ (Rs : Vec RelObj k) → snd (Functor.F0 F* Rs) ≡ Functor.F0 F2 (vecsnd Rs)

over-morphs1 : ∀ {Rs Ss : Vec RelObj k} (ms : (Relsˆ k) [Rs , Ss])

→ mfst (Functor.F1 F* ms)

≈ {!!} -- Goal: fst (Functor.F0 F* Rs) → fst (Functor.F0 F* Ss)

over-morphs2 : ∀ {Rs Ss : Vec RelObj k} (ms : (Relsˆ k) [Rs , Ss])

→ msnd (Functor.F1 F* ms)

≈ {!!} -- Goal: snd (Functor.F0 F* Rs) → snd (Functor.F0 F* Ss)

(12)

Just as it was defined in Definition 7.1.1, a relation transformer consists of a triple of functors of

the appropriate types and proofs that the actions of F* on objects and morphisms are over the

corresponding actions of F1 and F2. The field over-rels1 expresses that, for every vector of rela-

tions Rs, the domain of Functor.F0 F* Rs is equal to the set given by Functor.F0 F1 (vecfst Rs), where

vecfst : ∀{k} → Vec RelObj k→ Vec Set k applies fst : RelObj→ Set to every RelObj in a vector. The

field over-rels2 expresses an analogous proposition for vecsnd and snd. We also have the (incomplete)

over-morphs1 and over-morphs2 fields that should correspond to the third bullet point in Definition

7.1.1. The over-morphs1 field should express the fact that the first component of the action of F* on

morphisms in Relsˆ k is equivalent to the action of F1 on the first components of these morphisms, i.e.,

mfst (Functor.F1 F* ms) ≈ Functor.F1 F1 (vecmfst ms)

where vecmfst takes a morphism ms in Relsˆ k and returns a morphism in Setsˆ k by applying mfst

componentwise to ms. But the equivalence of morphisms above does not type-check! As shown in a

114

comment in (12), the expected type for the morphism being compared to mfst (Functor.F1 F* ms) is

fst (Functor.F0 F* Rs)→ fst (Functor.F0 F* Ss)

However, the morphism we would like to give for that hole is

Functor.F1 F1 (vecmfst ms) : Functor.F0 F1 (vecfst Rs)→ Functor.F0 F1 (vecfst Ss)

These types are propositionally equal because of the proof given by over-rels1, so it is possible to

make this definition work. However, it would be much nicer if these types were definitionally equal

because then we could compare these morphisms for equality directly. This would save us the trouble

of manipulating equality proofs everywhere.

To sidestep this issue, we use the following definition of relation transformers that is equivalent to

the one above:

record RTObj (k : N) : Set1 where

constructor RT[, ,]

open RelObj

field

F1 : Functor (Setsˆ k) Sets

F2 : Functor (Setsˆ k) Sets

F*Data : RTObj* F1 F2

This definition of RTObj consists of two set functors, F1 and F2, and some data defined by RTObj*:

record RTObj* {k : N} (F1 F2 : Functor (Setsˆ k) Sets) : Set1 where

open RelObj

private module F1 = Functor F1

private module F2 = Functor F2

field

F*Rel : ∀ (Rs : Vec RelObj k) → REL (F1.0 (vecfst Rs)) (F2.0 (vecsnd Rs))

F*Rel-preserves : ∀ {Rs Ss : Vec RelObj k} → (ms : (Relsˆ k) [Rs , Ss])

→ preservesRel (F*Rel Rs) (F*Rel Ss) (F1.1 (vecmfst ms)) (F2.1 (vecmsnd ms))

The field F*Rel corresponds to the action on objects of F* from the original definition of RTObj, but it

115

differs in that it gives a relation whose domain is F10 (vecfst Rs) and whose codomain is F20 (vecsnd Rs)

by definition. Note that the return type of F*Rel is given by REL rather than RelObj because we need to

give the domain and codomain explicitly. The field F*Rel-preserves gives a proof that the actions of F1

and F2 on morphisms preserve related elements between the relations given by F*Rel. F*Rel-preserves is

given in terms of preservesRel, which is the analogue of preservesRelObj for elements of REL (as opposed

to RelObj).

Given the data of RelObj*, we can define a functor of relations that corresponds to the F* field of

the original definition of RTObj:

F*RelObj : ∀ (Rs : Vec RelObj k) → RelObj

F*RelObj Rs = R[(F1.0 (vecfst Rs)) , (F2.0 (vecsnd Rs)) , (F*Rel Rs)]

F*RelMap : ∀ {Rs Ss : Vec RelObj k} → (ms : (Relsˆ k) [Rs , Ss]) → Rels [F*RelObj Rs , F*RelObj Ss]

F*RelMap {Rs} {Ss} ms = RM[(F1.1 (vecmfst ms)) , (F2.1 (vecmsnd ms)) , F*Rel-preserves ms]

F* : Functor (Relsˆ k) Rels

F* =

record

{ F0 = F*RelObj

; F1 = F*RelMap

...

}

(13)

The action of F* on objects is defined by F*RelObj, which applies the actions on objects of F1 and F2

for the set components and uses F*Rel for the relation component. The action on morphisms is defined

by F*RelMap , which applies the actions on morphisms of F1 and F2 for the mfst and msnd fields and

uses F*Rel-preserves for the relation-preserving proof.

It is not too difficult to see that these two definitions of relation transformers are equivalent. They

both have fields F1 and F2, and for both definitions, the action of F* on morphisms is completely

determined by F1 and F2. For the original definition, the action of F* on objects must satisfy over-rels1

and over-rels2. In our alternative definition, we must give the field F*Rel, but this is equivalent to

satisfying over-rels1 and over-rels2 because it is defined directly in terms of F1 and F2. The field

F*Rel-preserves is implicit in the original definition because the action of F* on morphisms returns

a morphism of relations that must preserve related elements by definition. Since such a morphism

116

of relations is (componentwise) equivalent (by over-morphs1 and over-morphs2) to those given by the

actions of F1 and F2 on morphisms, it follows that the actions of F1 and F2 on morphisms preserve

related elements.

The type of morphisms of relation transformers is defined by:

record RTMorph {k : N} (H K : RTObj k) : Set1 where

constructor RTM[, ,]

private module H = RTObj H

private module K = RTObj K

field

d1 : NaturalTransformation H.F1 K.F1

d2 : NaturalTransformation H.F2 K.F2

d-preserves : ∀ {Rs : Vec RelObj k} → preservesRelObj (Functor.F0 H.F* Rs) (Functor.F0 K.F* Rs)

(NaturalTransformation.η d1 (vecfst Rs))

(NaturalTransformation.η d2 (vecsnd Rs))

This definition is a direct translation of Definition 7.1.2. With the original definition of RTObj, the

d-preserves field would be another place that would require manipulating proofs of propositional equality.

From the data of RTMorph, we can define a natural transformation from the functor of relations H*

associated with H to the functor of relations K* associated with K:

d* : NaturalTransformation (RTObj.F* H) (RTObj.F* K)

The components of d* are defined by the components of d1 and d2, and the naturality proofs are given

componentwise in terms of the naturality proofs for d1 and d2.

Composition of morphisms of relation transformers is given componentwise:

compose-RTMorph : ∀ {k} {J K L : RTObj k} → RTMorph K L → RTMorph J K → RTMorph J L

compose-RTMorph RTM[f1 , f2 , f-resp] RTM[g1 , g2 , g-resp] = RTM[f1 ◦v g1 , f2 ◦v g2 , f-resp ◦’ g-resp]

We use composition of natural transformations to compose the d1 and d2 fields and use regular function

composition to compose the d-preserves fields. Identity morphisms of relation transformers are defined

by:

117

idRTMorph : ∀ {k : N} → (H : RTObj k) → RTMorph H H

idRTMorph {k} H = RTM[idnat , idnat , idf]

We have identity natural transformations for the d1 and d2 fields, and the identity function for the

d-preserves field.

With these definitions in hand, we can define the category of k-ary relation transformers:

RTCat : N → Category (lsuc lzero) (lsuc lzero) (lsuc lzero)

RTCat k = record

{ Obj = RTObj k

; ⇒ = RTMorph

; ≈ = λ m m’ → [Setsˆ k ,Sets] [RTMorph.d1 m ≈ RTMorph.d1 m’]

×’ [Setsˆ k ,Sets] [RTMorph.d2 m ≈ RTMorph.d2 m’]

; id = λ {H} → idRTMorph H

; ◦ = compose-RTMorph

...

}

Two morphisms of relation transformers are considered equivalent if the d1 and d2 are equivalent

morphisms in the functor category [Setsˆ k ,Sets]. The remaining fields are defined componentwise in

terms of the corresponding fields in the definition of [Setsˆ k ,Sets].

We also restructure the definition of higher-order relation transformers given in Definition 7.1.3 to

reap the benefits of definitional equality. The type of higher-order relation transformers is defined in

Agda by:

record HRTObj (k : N) : Set1 where

constructor HRT[, ,]

field

H1 : Functor [Setsˆ k ,Sets] [Setsˆ k ,Sets]

H2 : Functor [Setsˆ k ,Sets] [Setsˆ k ,Sets]

H*Data : HRTObj* H1 H2

118

An element of HRTObj k consists of two higher-order set functors H1 and H2 and some data defined by

the record type HRTObj*:

record HRTObj* {k : N} (H1 H2 : Functor [Setsˆ k ,Sets] [Setsˆ k ,Sets]) : Set1 where

private module H1 = Functor H1

private module H2 = Functor H2

field

H*RTRel : ∀ (Rt : RTObj k) (Rs : Vec RelObj k)

→ REL (Functor.F0 (H1.0 (RTObj.F1 Rt)) (vecfst Rs))

(Functor.F0 (H2.0 (RTObj.F2 Rt)) (vecsnd Rs))

H*RTRel-preserves : ∀ (Rt : RTObj k) → {Rs Ss : Vec RelObj k}

→ (ms : Relsˆ k [Rs , Ss])

→ preservesRel (H*RTRel Rt Rs) (H*RTRel Rt Ss)

(Functor.F1 (H1.0 (RTObj.F1 Rt)) (vecmfst ms))

(Functor.F1 (H2.0 (RTObj.F2 Rt)) (vecmsnd ms))

H*RT-preserves : ∀ {Rt St : RTObj k} (m : RTMorph Rt St) → {Rs : Vec RelObj k}

→ preservesRel (H*RTRel Rt Rs) (H*RTRel St Rs)

(NaturalTransformation.η (H1.1 (RTMorph.d1 m)) (vecfst Rs))

(NaturalTransformation.η (H2.1 (RTMorph.d2 m)) (vecsnd Rs))

Similarly to Definition 7.1.3, we are given functors H1 and H2. In contrast with Definition 7.1.3, we

must construct the functor H* in terms of H1, H2, and the three fields of HRTObj*. The fields H*RTRel,

H*RTRel-preserves, and H*RT-preserves correspond to the three implicit conditions listed in Definition

7.1.3.

From these data, we can construct a functor H* from the category of relation transformers to the

functor category [Relsˆ k ,Rels]:

119

H* : Functor (RTCat k) [Relsˆ k ,Rels]

H* = record

{ F0 = λ Rt → H*Obj Rt

; F1 = λ {Rt} {St} d → H*-map d

; identity = (Functor.identity H1) , (Functor.identity H2)

; homomorphism = (Functor.homomorphism H1) , (Functor.homomorphism H2)

; F-resp-≈ = λ (f1≈g1 , f2≈g2) → (Functor.F-resp-≈ H1 f1≈g1) , (Functor.F-resp-≈ H2 f2≈g2)

}

The action of H* on objects is defined by H*Obj

H*Obj : ∀ (Rt : RTObj k) → Functor (Relsˆ k) Rels

H*Obj Rt@(RT[F1 , F2 , F*]) =

RTObj.F* (RT[H1.0 F1

, H2.0 F2

, record { F*Rel = H*RTRel Rt ; F*Rel-preserves = H*RTRel-preserves Rt }])

H*Obj takes a relation transformer Rt3 and produces a functor of relations by first applying H1 and H2

to the components of Rt and then using the F* construct defined in (13) to get a functor of relations.

This definition of H*Obj ensures that the first implicit condition in Definition 7.1.3 is satisfied.

The action of H* on morphisms of relation transformers is defined by:

H*-map : ∀ {Rt St : RTObj k}

→ (d : RTMorph Rt St)

→ [Relsˆ k ,Rels] [H*Obj Rt , H*Obj St]

H*-map {Rt} d =

record { η = λ Rs → H*-map-component d Rs

; commute = λ fs → H*-map-commutes d fs

; sym-commute = λ fs → Category.Equiv.sym Rels (H*-map-commutes d fs) }

H*-map takes a morphism of relation transformers from Rt to St and returns a natural transformation

3The Agda notation patternName@(pattern) gives a name to the pattern inside the parentheses. This allows us to refer
to a term that we have pattern matched on by a shorter name rather than using the full pattern to refer to the term.

120

from H*Obj Rt to H*Obj St in the functor category [Relsˆ k ,Rels]. The components of this natural

transformation are defined by:

H*-map-component : ∀ {Rt St : RTObj k} → (d : RTMorph Rt St)

→ (Rs : Vec RelObj k)

→ RelMorph (Functor.F0 (H*Obj Rt) Rs) (Functor.F0 (H*Obj St) Rs)

H*-map-component d@(RTM[d1 , d2 , d-preserves]) Rs =

RM[(NaturalTransformation.η (H1.1 d1) (vecfst Rs))

, (NaturalTransformation.η (H2.1 d2) (vecsnd Rs))

, H*RT-preserves d]

H*-map-commutes is defined by first applying the actions of H1 and H2 on morphisms to d1 and d2.

This gives

H1.1 d1 : NaturalTransformation (H1.0 (RTObj.F1 Rt)) (H1.0 (RTObj.F1 St))

and

H2.1 d2 : NaturalTransformation (H2.0 (RTObj.F2 Rt)) (H2.0 (RTObj.F2 St))

We then take the component of H1.1 d1 at vecfst Rs and the component of H2.1 d2 at vecsnd Rs. The

proof that these components (functions) preserve related elements is given by H*RT-preserves. The

proofs of naturality for H*-map-commutes are defined by:

H*-map-commutes : ∀ {Rt St : RTObj k} → (d : RTMorph Rt St)

→ {Rs Ss : Vec RelObj k}

→ (fs : (Relsˆ k) [Rs , Ss])

→ Rels [H*-map-component d Ss ◦RelM Functor.F1 (H*Obj Rt) fs

≈ Functor.F1 (H*Obj St) fs ◦RelM H*-map-component d Rs]

H*-map-commutes RTM[d1 , d2 ,] fs =

NaturalTransformation.commute (H1.1 d1) (vecmfst fs)

, NaturalTransformation.commute (H2.1 d2) (vecmsnd fs)

The naturality proof is defined componentwise in terms of the naturality proofs for H1.1 d1 on the

morphism vecmfst fs and H2.1 d2 on the morphism vecmsnd fs. The identity, homomorphism, and F-resp-≈

fields for H* are defined componentwise using the corresponding fields of H1 and H2.

121

The data of HRTObj* are also sufficient to define an endofunctor on the category of relation trans-

formers.

HEndo : Functor (RTCat k) (RTCat k)

HEndo = record

{ F0 = HEndo-obj

; F1 = HEndo-map

; identity = (Functor.identity H1) , (Functor.identity H2)

; homomorphism = (Functor.homomorphism H1) , (Functor.homomorphism H2)

; F-resp-≈ = λ { (f1≈g1 , f2≈g2) → Functor.F-resp-≈ H1 f1≈g1 , Functor.F-resp-≈ H2 f2≈g2 }

}

The action of HEndo on objects is defined by:

HEndo-obj : ∀ (Rt : RTObj k) → RTObj k

HEndo-obj Rt@(RT[F1 , F2 ,]) = RT[(H1.0 F1) , (H2.0 F2) , HEndo-rel* Rt]

HEndo-obj takes a relation transformer and returns a relation transformer whose first two components

are defined by applying the actions of H1 and H2 on objects componentwise. The third component is

defined by:

HEndo-rel* : ∀ (Rt : RTObj k) → RTObj* (H1.0 (RTObj.F1 Rt)) (H2.0 (RTObj.F2 Rt))

HEndo-rel* Rt = record { F*Rel = H*RTRel Rt

; F*Rel-preserves = H*RTRel-preserves Rt }

HEndo-rel* gives the action on relations for HEndo-obj and a proof that the actions of H1.0 F1 and

H2.0 F2 on morphisms preserve related elements. These fields are defined by applying H*RTRel and

H*RTRel-preserves to Rt.

The action of HEndo on morphisms is defined by:

HEndo-map : ∀ {Rt St : RTObj k} (d : RTMorph Rt St) → RTMorph (HEndo-obj Rt) (HEndo-obj St)

HEndo-map d@(RTM[d1 , d2 ,]) = RTM[(H1.1 d1) , (H2.1 d2) , H*RT-preserves d]

HEndo-map takes a morphism of relation transformers and returns a morphism of relation transformers

whose first two components are defined by applying the actions of H1 and H2 on morphisms compo-

nentwise to get the natural transformations H1.1 d1 and H2.1 d2. The third component is defined by

122

H*RT-preserves, which proves that, for every vector of relations Rs, the components of these natural

transformations at vecfst Rs and vecsnd Rs preserve related elements.

The type of morphisms of higher-order relation transformers is defined by:

record HRTMorph {k : N} (H K : HRTObj k) : Set1 where

constructor HRTM[, ,]

private module H = HRTObj H

private module K = HRTObj K

open H using (H* ; H1 ; H2)

open K renaming (H* to K* ; H1 to K1 ; H2 to K2)

field

σ1 : NaturalTransformation H1 K1

σ2 : NaturalTransformation H2 K2

σ-preserves : ∀ (Rt : RTObj k) (Rs : Vec RelObj k)

→ preservesRelObj (Functor.F0 (Functor.F0 H* Rt) Rs)

(Functor.F0 (Functor.F0 K* Rt) Rs)

(NaturalTransformation.η

(NaturalTransformation.η σ1 (RTObj.F1 Rt)) (vecfst Rs))

(NaturalTransformation.η

(NaturalTransformation.η σ2 (RTObj.F2 Rt)) (vecsnd Rs))

This definition is a direct translation of 7.1.4. An element of HRTMorph consists of a pair of higher-order

natural transformations and proof that appropriately typed components of these natural transforma-

tions preserve related elements. The field σ-preserves corresponds to the implicit condition of Definition

7.1.4.

Composition of morphisms of higher-order relation transformers is given componentwise:

composeHRTMorph : ∀ {k} {H K L : HRTObj k} → HRTMorph K L → HRTMorph H K

→ HRTMorph H L

composeHRTMorph HRTM[σ1 , σ2 , σ-preserves] HRTM[σ1’ , σ2’ , σ’-preserves]

= HRTM[(σ1 ◦v σ1’) , (σ2 ◦v σ2’)

, (λ Rt Rs xy∈HRtRs → σ-preserves Rt Rs (σ’-preserves Rt Rs xy∈HRtRs))]

123

The σ1 and σ2 fields are defined by composition of natural transformations, and the σ-preserves field is

defined by function composition. Identity morphisms of higher-order relation transformers are defined

by:

idHRTMorph : ∀ {k : N} {H : HRTObj k} → HRTMorph H H

idHRTMorph {H} = HRTM[idnat , idnat , (λ Rt Rs → idf)]

The σ1 and σ2 fields are defined by identity natural transformations and the σ-preserves field is defined

by the identity function.

With these definitions in hand, we can define the category of k-ary higher-order relation transformers:

HRTCat : N → Category (lsuc lzero) (lsuc lzero) (lsuc lzero)

HRTCat k = record

{ Obj = HRTObj k

; ⇒ = HRTMorph

; ≈ = λ {H} {K} m m’ → (HRTMorph.σ1 m ≈ HRTMorph.σ1 m’)

×’(HRTMorph.σ2 m ≈ HRTMorph.σ2 m’)

; id = idHRTMorph

; ◦ = composeHRTMorph

...

}

where open Category ([[[Setsˆ k ,Sets] , [Setsˆ k ,Sets]]])

Two morphisms of higher-order relation transformers are considered equivalent if their compo-

nents are equivalent in the higher-order functor category [[[Setsˆ k ,Sets] , [Setsˆ k ,Sets]]]. The re-

maining fields are defined componentwise in terms of the corresponding fields in the definition of

[[[Setsˆ k ,Sets] , [Setsˆ k ,Sets]]].

7.2.2 Functors of Relation Transformers

Given the definitions of categories of relations and relation transformers in the previous sections, we

can define several functors that go between these categories and their set analogues.

We have projection functors from the category of relations to the category of sets:

124

π1Rels : Functor Rels Sets

π1Rels = record

{ F0 = fst

; F1 = mfst

; identity = ≡.refl

; homomorphism = ≡.refl

; F-resp-≈ = λ { (f1≈g1 ,) → f1≈g1 }

}

π2Rels : Functor Rels Sets

π2Rels = record

{ F0 = snd

; F1 = msnd

; identity = ≡.refl

; homomorphism = ≡.refl

; F-resp-≈ = λ { (, f2≈g2) → f2≈g2 }

}

These projection functor π1Rels (resp., π2Rels) is defined by projecting out the fst and mfst (resp., snd

and msnd) fields of relations and morphisms of relations. The remaining fields are straightforward to

define because composition and identity for relations are defined componentwise by morphisms in Sets.

We also have a functor that takes a set and returns the corresponding equality relation:

Eq : Functor Sets Rels

Eq = record

{ F0 = EqRelObj

; F1 = EqRel-map

; identity = ≡.refl , ≡.refl

; homomorphism = ≡.refl , ≡.refl

; F-resp-≈ = λ f≈g → f≈g , f≈g

}

The action on objects is defined above in (11). The action on morphisms is defined by:

125

EqRel-map : ∀ {X Y : Set} → (X → Y) → RelMorph (EqRelObj X) (EqRelObj Y)

EqRel-map f = RM[f , f , (λ x≡y → ≡.cong f x≡y)]

The action of Eq on a function f is given by pairing f with itself. The proof that this pair of functions

preserves related (equal) elements is defined by applying ≡.cong to f and a proof of type x ≡ y to get

a proof of type f x ≡ f y. Again, the remaining fields are straightforward to define because composition

and identity for relations are defined componentwise by morphisms in Sets.

We also have the analogous functors for relation transformers:

π1RT : ∀ {k} → Functor (RTCat k) [Setsˆ k ,Sets]

π1RT {k} = record

{ F0 = RTObj.F1

; F1 = RTMorph.d1

; identity = ≡.refl

; homomorphism = ≡.refl

; F-resp-≈ = λ { (f1≈g1 ,) → f1≈g1 }

}

π2RT : ∀ {k} → Functor (RTCat k) [Setsˆ k ,Sets]

π2RT {k} = record

{ F0 = RTObj.F2

; F1 = RTMorph.d2

; identity = ≡.refl

; homomorphism = ≡.refl

; F-resp-≈ = λ { (, f2≈g2) → f2≈g2 }

}

These projection functors of relation transformers are defined by projecting out the appropriate fields

of RTObj and RTMorph. The remaining fields are straightforward to define because composition and

identities are given componentwise and because equality of morphisms in [Setsˆ k ,Sets] computes down

to equality of morphisms in Sets.

We also have a functor that takes a functor of sets and produces the equality relation transformer

associated to it. We elide the details of this construction because its definition is motivated by some

126

abstract categorical reasoning, but it is a direct translation of the equality relation transformer con-

struction given in [5].

EqRT : ∀ {k} → Functor [Setsˆ k ,Sets] (RTCat k)

7.3 Relation Environments

In this section we define relation environments and discuss their formalization in Agda. Relation

environments are analogous to set environments, except that instead of sending variables to functors in

[Setsˆ k ,Sets], relation environments send variables to relation transformers.

Definition 7.3.1. A relation environment maps each variable of arity k to a k-ary relation transformer.

A morphism of relation environments f : ρ → ρ′ only exists when ρ and ρ′ are equal on all non-

functorial variables. A morphism of relation environments f : ρ→ ρ′ sends each non-functorial variable

ψk to the identity morphism on ρψk = ρ′ψk and sends each functorial variable ϕk to a morphism of

relation transformers from ρϕk to ρ′ϕk. Composition of morphisms is given pointwise, i.e., (g ◦ f)ϕk =

(gϕk) ◦ (fϕk), where the second composition is a composition in the category of relation transformers.

An identity morphism of relation environments maps a relation environment ρ to itself by sending every

variable ϕk to the identity morphism on ρϕk. If ρ is a relation environment, we write π1ρ and π2ρ for

the set environments mapping each type variable ϕ to the functors (ρϕ)1 and (ρϕ)2, respectively. If ρ

is a set environment, we write Eqρ for the relation environment mapping each type variable ϕ to the

equality relation transformer4 Eqρϕ. These data yield a category of relation environments, RelEnv.

7.3.1 Relation Environments in Agda

The definition of relation environments in Agda is exactly in parallel to the definition of set environ-

ments. In fact, we can generalize the constructions for set environments given in Section 4.2 to give

a definition of environments such that each environment interprets variables in an arbitrary category.

We then define set environments and relation environments by instantiating the generic construction

with the appropriate categories. For set environments, we interpret variables of arity k as objects of

[Setsˆ k ,Sets]. For relation environments, we interpret variables of arity k as objects of RTCat k.

4We elide the formal definition of equality relation transformers from [5] in this thesis, but an equality relation
transformer EqF can be thought of informally as the analogue of the equality relation on a set for a functor of Sets.

127

The definitions for relation environments are given the same names as their set analogues except

“Set” is replaced with “Rel”. For example the category of relation environments is called RelEnvCat.

Its objects are called RelEnv and its morphisms are called RelEnvMorph.

We also have functors for going between set environments and relation environments. In particular,

we have projection functors that take relation environments and return set environments:

π1Env : Functor RelEnvCat SetEnvCat

π2Env : Functor RelEnvCat SetEnvCat

Each of these functors is defined by applying the corresponding projection functor for relation trans-

formers (π1RT or π2RT) pointwise to each variable in the relation environment. We also have a functor

that takes a set environment and produces a relation environment defined in terms of equality relations

and equality relation transformers:

EqEnv : Functor SetEnvCat RelEnvCat

This functor is defined by applying the functor EqRT pointwise to each variable in a set environment.

7.4 Interpreting Types as Relations

Before defining the relation semantics of types, let us recall the relation constructions we have defined

so far and compare them to their set analogues. The following table shows the correspondence between

the relation constructions and their analogues for sets:

In place of sets, the relation semantics uses relations to interpret types. In place of functions, we

have morphisms of relations, i..e, pairs of functions that must preserve related elements. In place of

k-ary functors of sets, we have k-ary relation transformers. In place of k-ary higher-order functors of

sets, we have k-ary higher-order relation transformers. In place of set environments, we have relation

environments that interpret variables of arity k as k-ary relation transformers. The fact that all of the

relation constructions have the corresponding set constructions as their components is key to ensuring

that the relation semantics is “over” the set semantics. Note that we use the letter ρ to denote both

set environments and relation environments, but the type of ρ should be clear from context (otherwise

we state its type explicitly). For example, if we write π1ρ, then ρ must be a relation environment. If

we write Eqρ, then ρ must be a set environment.

128

Set semantics Relation semantics

A : Sets (A,B,R) : Rels

f : A→ A′ (f, g) : (A,B,R)→ (A′, B′, R′)

F : [Setsk, Sets] (F 1, F 2, F ∗) : RTk

H : [[Setsk, Sets], [Setsk, Sets]] (H1, H2, H∗) : HRTk

ρ : SetEnv ρ : RelEnv

Table 7.1: Constructs used in the set semantics of types and their relational analogues.

Definition 7.4.1. Given a typing judgment Γ; Φ ` F , we define its relational interpretation JΓ; Φ ` F KRel

as a functor from the category of relation environments to the category of relations. The action of the

relational interpretation on a relation environment ρ is defined (in non-Agda syntax) by:

JΓ; Φ ` 0KRelρ = 0

JΓ; Φ ` 1KRelρ = 1

JΓ; ∅ ` Natα F GKRelρ = {η : λR. JΓ;α ` F KRelρ[α := R]⇒ λR. JΓ;α ` GKRelρ[α := R]}

= {(t, t′) ∈ JΓ; ∅ ` Natα F GKSet(π1ρ)× JΓ; ∅ ` Natα F GKSet(π2ρ) |

∀R1 : Rel(A1, B1) ... Rk : Rel(Ak, Bk).

(tA, t
′
B

) : JΓ;α ` F KRelρ[α := R]→ JΓ;α ` GKRelρ[α := R]}

JΓ; Φ ` ϕF KRelρ = (ρϕ)JΓ; Φ ` F KRelρ

JΓ; Φ ` F +GKRelρ = JΓ; Φ ` F KRelρ+ JΓ; Φ ` GKRelρ

JΓ; Φ ` F ×GKRelρ = JΓ; Φ ` F KRelρ× JΓ; Φ ` GKRelρ

129

JΓ; Φ ` (µϕ.λα.H)GKRelρ = (µTH,ρ)JΓ; Φ ` GKRelρ

where TH,ρ = (T Set
H,π1ρ, T

Set
H,π2ρ, T

Rel
H,ρ)

and TRel
H,ρ F = λR.JΓ;ϕ, α ` HKRelρ[ϕ := F][α := R]

and TRel
H,ρ δ = λR.JΓ;ϕ, α ` HKRelidρ[ϕ := δ][α := idR]

The types 0 and 1 are interpreted as the empty relation 0 (the empty subset of the product of empty

sets) and the singleton relation 1 (the singleton subset of the product of singleton sets), respectively.

The Nat type is interpreted as a a subset of

JΓ; ∅ ` Natα F GKSet(π1ρ)× JΓ; ∅ ` Natα F GKSet(π2ρ)

where natural transformations t and t′ are related if, for every vector of relations R1 : Rel(A1, B1)...Rk :

Rel(Ak, Bk) tA and tB preserve related elements from JΓ;α ` F KRelρ[α := R] to JΓ;α ` GKRelρ[α := R].

The relational interpretation of type application is given by applying (the third component of) the

relation transformer ρϕ to the vector of relations JΓ; Φ ` fKRelρ given by interpreting the arguments of ϕ.

The relational interpretation of a sum type is defined as the sum of the relations given by interpreting the

summand types. Given relations R : Rel(A,B) and R′ : Rel(A′, B′), the sum R+R′ : Rel(A+A′, B+B′)

is defined by:

R+R′ = {inl x, inl y |x, y ∈ R} ∪ {inr x′, inr y′ |x′, y′ ∈ R′}

That is, two elements are related by R+R′ if they come from the same summand (both inl or both inr)

and are related by R or R′. The relational interpretation of a product type is defined as the product of

the relations given by interpreting the components of the product. Given relations R : Rel(A,B) and

R′ : Rel(A′, B′), the product R×R′ : Rel(A×A′, B ×B′) is defined by:

R×R′ = {(x, x′), (y, y′) |x, y ∈ R, x′, y′ ∈ R′}

That is, two elements (pairs) are related by R×R′ if their first components are related by R and their sec-

ond components are related R′. The relational interpretation of µ types is defined by taking the fixpoint

of the higher-order relation transformer TH,ρ and applying the fixpoint to the vector of relations given

by interpreting the arguments G of the µ-type. The higher-order relation transformer TH,ρ is defined as

a triple where first two components are given by the higher-order set functors T Set
H,π1ρ

and T Set
H,π2ρ

. The

third component is given by the higher-order functor of relations TRel
H,ρ : [[Relsk,Rels], [Relsk,Rels]], which

130

is defined in terms of environment extension. We describe the fixpoint construction for higher-order

relation transformers at the end of this chapter.

As desired, all of these relation constructions are “over” their set analogues. For example, the

relational interpretation of natural transformations in relation environment ρ relates elements of the

set interpretations of natural transformations in set environments π1ρ and π2ρ. Since we have defined

the relational interpretation of types this way, we can prove the following pair of lemmas, which define

formally what it means for the relation interpretation to be “over” the set interpretation:

Lemma 7.4.1. For every Γ; Φ ` F and relation environment ρ,

π1(JΓ; Φ ` F KRelρ) = JΓ; Φ ` F KSetπ1ρ

π2(JΓ; Φ ` F KRelρ) = JΓ; Φ ` F KSetπ2ρ

We formalize these “over-ness” lemmas in Agda in Chapter 8

7.4.1 Interpreting Types as Relations in Agda

The relational interpretation of types is defined in Agda by the function:

RelSem : ∀ {Γ : TCCtx} → {Φ : FunCtx} → {F : TypeExpr}

→ Γ o Φ ` F

→ Functor RelEnvCat Rels

The relational interpretation function RelSem takes a type F and a typing judgment Γ o Φ ` F and

returns a functor from the category of relation environments to the category of relations. It is defined

by induction on the structure of the type formation rules, just as in Definition 7.4.1. We also have a

function for interpreting vectors of type expressions and their typing judgments:

RelSemVec : ∀ {k : N} {Γ : TCCtx} {Φ : FunCtx}

→ {Fs : Vec TypeExpr k}

→ foreach (λ F → Γ o Φ ` F) Fs

→ Functor RelEnvCat (Relsˆ k)

RelSem and RelSemVec are defined by mutual induction, where RelSemVec applies RelSem to each type

(and its typing judgment) in a vector of types.

131

The relational interpretations for 0-I and 1-I are defined as constant functors:

RelSem 0-I = ConstF Rel⊥

RelSem 1-I = ConstF Rel>

Rel⊥ and Rel> are the empty relation and singleton relation, respectively. These relations are defined

by:

Rel⊥ : RelObj

Rel⊥ = R[⊥ , ⊥ , (λ → ⊥)]

Rel> : RelObj

Rel> = R[> , > , (λ → >)]

The domain and codomain of the empty relation Rel⊥ are the empty set, and the set of proofs that two

elements are related is also given by the empty set. The domain and codomain of the singleton relation

Rel> are the singleton set, and the set of proofs that the single element is related to itself is given by

the singleton set. That is, there is exactly one proof that the singleton element is related to itself.

The relational interpretation for a product type is given by:

RelSem (×-I `F `G) = RelsProd ◦F (RelSem `F ※ RelSem `G)

This definition is analogous to the set interpretation for product types, but this definition uses the

product functor

RelsProd : Functor (Product Rels Rels) Rels

for relations instead of the one for sets. The action of RelsProd on objects takes a pair of relations and

returns their product. It is defined by:

×REL : ∀ {A B A’ B’ : Set} → REL A B → REL A’ B’ → REL (A ×’ A’) (B ×’ B’)

(R0 ×REL S0) (x , x’) (y , y’) = R0 x y ×’ S0 x’ y’

×Rel : RelObj → RelObj → RelObj

R ×Rel S = R[(fst R ×’ fst S) , (snd R ×’ snd S) , (rel R ×REL rel S)]

The domain and codomain of the product relation are given by componentwise products, and two

pairs are related if their components are both related. The remaining fields for RelsProd are defined

componentwise.

132

The relational interpretation for a sum type is given by:

RelSem (+-I `F `G) = RelsSum ◦F (RelSem `F ※ RelSem `G)

The sum functor for relations is defined by:

RelsSum : Functor (Product Rels Rels) Rels

The action of RelsSum on objects takes a pair of relations and returns their sum. It is defined by:

+REL : ∀ {A B A’ B’ : Set} → REL A B → REL A’ B’ → REL (A] A’) (B] B’)

(R0 +REL S0) (inj1 x) (inj1 y) = R0 x y

(R0 +REL S0) (inj2 x’) (inj2 y’) = S0 x’ y’

(R0 +REL S0) = ⊥

+Rel : RelObj → RelObj → RelObj

R +Rel S = R[(fst R] fst S) , (snd R] snd S) , (rel R +REL rel S)]

The domain and codomain of the sum relation are given by componentwise sums (disjoint unions) of

sets, and two elements are related if they come from the same summand (both inj1 or both inj2) and

are related by the appropriate relation. If two elements come from different summands (i.e., inj1 and

inj2 or vice versa), then they are not related. This is implemented by the third case of +REL , which

says that the set of proofs that elements from different summands are related is empty. The remaining

fields for RelsSum are defined componentwise.

The relational interpretations of type applications are defined by:

RelSem (AppT-I {ϕ = ϕ} Γ3ϕ Gs `Gs) = eval ◦F (VarRelSem-TC ϕ ※ RelSemVec `Gs)

RelSem (AppF-I {ϕ = ϕ} Φ3ϕ Gs `Gs) = eval ◦F (VarRelSem-FV ϕ ※ RelSemVec `Gs)

The functors VarRelSem-TC and VarRelSem-FV

VarRelSem-TC : ∀ {k : N} (ϕ : TCVar k) → Functor RelEnvCat [Relsˆ k ,Rels]

VarRelSem-FV : ∀ {k : N} (ϕ : FVar k) → Functor RelEnvCat [Relsˆ k ,Rels]

each take a type variable of arity k and return a functor from the category of relation environments

to the category of k-ary functors of relations. The action of VarRelSem-TC on objects takes a relation

environment and returns the k-ary functor of relations associated with the relation transformer given

133

by applying ρ to ϕ. The action on morphisms takes a morphism f of relation environments and returns

the natural transformation associated with the morphism of relation transformers given by applying f

to ϕ. VarRelSem-FV is defined analogously.

The relational interpretation of a Nat type is defined by:

RelSem (Nat-I {αs = αs} `F `G) = NatTypeRelFunctor αs `F `G

NatTypeRelFunctor is defined analogously to the functor NatTypeFunctor introduced in Section 4.4. Its

action on objects takes a relation environment and returns a relation defined by:

NatTypeRelObj : ∀ {k : N} {Γ : TCCtx} {F G : TypeExpr}

→ (αs : Vec (FVar 0) k) (ρ : RelEnv)

→ (`F : Γ o ∅ ,++ αs ` F) → (`G : Γ o ∅ ,++ αs ` G)

→ RelObj

NatTypeRelObj {k} αs ρ `F `G =

R[NatTypeSem αs (Functor.F0 π1Env ρ) `F `G

, NatTypeSem αs (Functor.F0 π2Env ρ) `F `G

, (λ η1 η2 → NTs-preserve-rels αs ρ `F `G (NatTypeSem.nat η1) (NatTypeSem.nat η2))]

The domain and codomain of this relation are given by the set interpretation of Nat types in the set

environments Functor.F0 π1Env ρ and Functor.F0 π2Env ρ. The third component is defined by:

{-# NO UNIVERSE CHECK #-}

record NTs-preserve-rels {k : N} {Γ : TCCtx}

{F G : TypeExpr} (αs : Vec (FVar 0) k) (ρ : RelEnv)

(`F : Γ o (∅ ,++ αs) ` F) (`G : Γ o (∅ ,++ αs) ` G)

(η1 : NaturalTransformation (extendSetSem-αs αs (Functor.F0 π1Env ρ) (SetSem `F))

(extendSetSem-αs αs (Functor.F0 π1Env ρ) (SetSem `G)))

(η2 : NaturalTransformation (extendSetSem-αs αs (Functor.F0 π2Env ρ) (SetSem `F))

(extendSetSem-αs αs (Functor.F0 π2Env ρ) (SetSem `G)))

: Set where

field

preserves :

134

∀ (Rs : Vec RelObj k)

→ preservesRelObj-prop-eq

(Functor.F0 (RelSem `F) (Functor.F0 (extendRelEnv-αs αs ρ) Rs))

(Functor.F0 (RelSem `G) (Functor.F0 (extendRelEnv-αs αs ρ) Rs))

(nat-help1 αs ρ `F Rs) (nat-help2 αs ρ `F Rs)

(nat-help1 αs ρ `G Rs) (nat-help2 αs ρ `G Rs)

(NaturalTransformation.η η1 (vecfst Rs))

(NaturalTransformation.η η2 (vecsnd Rs))

This record type consists of a single field preserves that expresses the condition for two natural trans-

formations to be related given in the Nat case of Definition 7.4.1. This condition says that, for every

vector of relations Rs, the components of η1 and η2 at vecfst Rs and vecsnd Rs must preserve related

elements from the relational interpretation of `F in an environment extended by Rs to the relational

interpretation of `G in an environment extended by Rs. Unfortunately, the components of the natural

transformations here do not have the right types to comprise a morphism between these relations. But

we can prove that the types of these components are propositionally equal to the desired types, so we

can express this relation preservation property in terms of the function:

preservesRelObj-prop-eq : ∀ {A B A’ B’} (R R’ : RelObj)

→ A ≡ fst R → B ≡ snd R

→ A’ ≡ fst R’ → B’ ≡ snd R’

→ (f : A → A’) (g : B → B’)

→ Set

preservesRelObj-prop-eq R R’ ≡.refl ≡.refl ≡.refl ≡.refl f g = preservesRelObj R R’ f g

The function preservesRelObj-prop-eq expresses that two functions preserve related elements between

R and R’ when the types of the functions are propositionally equal to the corresponding types of

the relations. It is defined by pattern matching on the equality proofs, which causes the types of

the relations and functions to match, and then calling preservesRelObj to express the usual relation-

preserving condition. The proofs of equality for the instance of preservesRelObj-prop-eq above are given

by the functions:

135

nat-help1 : ∀ {k : N} {Γ : TCCtx} {Φ} {F : TypeExpr} (αs : Vec (FVar 0) k) (ρ : RelEnv)

→ (`F : Γ o Φ ` F)

→ (Rs : Vec RelObj k)

→ Functor.F0 (extendSetSem-αs αs (Functor.F0 π1Env ρ) (SetSem `F)) (vecfst Rs)

≡ RelObj.fst (Functor.F0 (RelSem `F) (Functor.F0 (extendRelEnv-αs αs ρ) Rs))

nat-help2 : ∀ {k : N} {Γ : TCCtx} {Φ} {F : TypeExpr} (αs : Vec (FVar 0) k) (ρ : RelEnv)

→ (`F : Γ o Φ ` F)

→ (Rs : Vec RelObj k)

→ Functor.F0 (extendSetSem-αs αs (Functor.F0 π2Env ρ) (SetSem `F)) (vecsnd Rs)

≡ RelObj.snd (Functor.F0 (RelSem `F) (Functor.F0 (extendRelEnv-αs αs ρ) Rs))

In the syntax of [5], the types of these functions correspond to

JΓ;α ` F KSetπ1ρ[α := π1R] = π1(JΓ;α ` F KRelρ[α := R])

and

JΓ;α ` F KSetπ2ρ[α := π2R] = π2(JΓ;α ` F KRelρ[α := R])

The functions nat-help1 and nat-help2 are defined in terms of the proof that the relation semantics of

types is over the set semantics of types.

The relational interpretation for a µ-type is given by:

RelSem (µ-I `F Ks `Ks) = MuRelSem `F (RelSemVec `Ks)

It is defined in terms of the function MuRelSem:

MuRelSem : ∀ {k : N} {Γ : TCCtx} {H : TypeExpr}

→ {ϕ : FVar k} {αs : Vec (FVar 0) k}

→ Γ o (∅ ,++ αs) ,, ϕ ` H

→ Functor RelEnvCat (Relsˆ k) → Functor RelEnvCat Rels

MuRelSem {k} `H SemKs =

let fixRT : Functor RelEnvCat (RTCat k)

fixRT = (fixHRT ◦F TEnvRT `H)

136

fixRels : Functor RelEnvCat [Relsˆ k ,Rels]

fixRels = embedRT ◦F fixRT

in eval ◦F (fixRels ※ SemKs)

This definition has the same form as the definition of MuSem introduced in Section 4.4. Instead of taking

a fixpoint of a higher-order functor of sets, we take the fixpoint of a higher-order relation transformer

given by:

TEnvRT : ∀ {k : N} {Γ : TCCtx} {H : TypeExpr}

→ {ϕ : FVar k} {αs : Vec (FVar 0) k}

→ Γ o (∅ ,++ αs) ,, ϕ ` H

→ Functor (RelEnvCat) (HRTCat k)

TEnvRT is defined in terms of environment extension and is analogous to the higher-order functor TSet

introduced in Section 4.4. It corresponds to the higher-order relation transformer TH,ρ from Definition

7.4.1. In order to use eval to define a functor from RelEnvCat to Rels, we also must use the functor

embedRT : ∀ {k} → Functor (RTCat k) [Relsˆ k ,Rels]

that embeds a relation transformer into the functor category [Relsˆ k ,Rels]. The action of embedRT

on objects takes a relation transformer F and returns the k-ary functor of relations F* associated with

F. The action of embedRT on morphisms takes a morphism of relation transformers d and returns the

natural transformation d* associated with d. The fixpoint construction for relation transformers

fixHRT : ∀ {k} → Functor (HRTCat k) (RTCat k)

is defined in the next section. Its action on objects takes a higher-order relation transformer and returns

its fixed point, which is a relation transformer. The action on morphisms takes a morphism of higher-

order relation transformers from H1 to H2 and returns a morphism of relation transformers from the

fixpoint of H1 to the fixpoint of H2.

137

7.4.2 Fixpoints of Relation Transformers in Agda

In this section we present our Agda formalization of fixpoints of higher-order relation transformers. The

goal of this development is to define the function

fixHRT : ∀ {k} → Functor (HRTCat k) (RTCat k)

that is used in the relational interpretation of µ-types. In contrast with the set semantics of µ-types,

we do not simply take the fixpoint of a higher-order functor of relations. Instead, we take the fix-

point of a higher-order relation transformer, which plays the role of an endofunctor on the category of

relation transformers, but also has some extra structure. The extra structure is defined by two higher-

order functors of sets. If we have a higher-order relation transformer RH whose set components are

H1,H2 : [[[Setsˆ k ,Sets] , [Setsˆ k ,Sets]]], then the fixpoint of RH will be a relation transformer that is

over the fixpoints of H1 and H2.

We import the Agda module that implements fixpoints of set functors by the following statement:

import HFixSet as SetFix

This allows us to refer to the fixpoints of set functors throughout this section. The TERMINATING

and NO POSITIVITY CHECK flags needed for the constructs below are explained after we define each

of these constructs.

The action on objects of fixHRT is defined by fixHRT0:

module object-fixpoint-rel {k : N} where

HFunc = Functor [Setsˆ k ,Sets] [Setsˆ k ,Sets]

{-# TERMINATING #-}

fixHRT0 : ∀ (H1 H2 : HFunc) (RH : HRTObj* H1 H2) → RTObj k

fixHRT0 H1 H2 RH = RT[(SetFix.fixH0 H1) , (SetFix.fixH0 H2) , (fixHRT0* H1 H2 RH)]

The function fixHRT0 takes two higher-order set functors H1 and H2 and a higher-order relation trans-

former RH that is over H1 and H2 and returns a relation transformer. The first two components of the

fixpoint relation transformer are defined to be the fixpoints of the higher-order set functors H1 and H2.

The third component is defined by:

138

{-# TERMINATING #-}

fixHRT0* : ∀ (H1 H2 : HFunc) (RH : HRTObj* H1 H2) → RTObj* (SetFix.fixH0 H1) (SetFix.fixH0 H2)

fixHRT0* H1 H2 RH =

record { F*Rel = λ Rs x y → HRTFixRel H1 H2 RH Rs x y

; F*Rel-preserves = fix-preserves }

The function fixHRT0* returns the data of the record type RTObj* (SetFix.fixH0 H1) (SetFix.fixH0 H2).

The action on relations F*Rel is defined by the data type:

{-# NO POSITIVITY CHECK #-}

data HRTFixRel (H1 H2 : HFunc) (RH : HRTObj* H1 H2)

: ∀ (Rs : Vec RelObj k)

→ REL (SetFix.HFixObj H1 (vecfst Rs)) (SetFix.HFixObj H2 (vecsnd Rs))

HRTFixRel is parameterized by H1, H2, and RH. Given a vector of relations Rs, the type

HRTFixRel H1 H2 RH Rs

gives a relation between the fixpoint of H1 applied to vecfst Rs and the fixpoint of H2 applied to vecsnd Rs.

Just like its analogue HFixObj for sets, HRTFixRel has a single constructor defined by:

data HRTFixRel H1 H2 RH where

rhin : ∀ {Rs : Vec RelObj k}

→ {x : Functor.F0 (Functor.F0 H1 (SetFix.fixH0 H1)) (vecfst Rs)}

→ {y : Functor.F0 (Functor.F0 H2 (SetFix.fixH0 H2)) (vecsnd Rs)}

→ RTObj.F*Rel

((HEndo-obj HRT[H1 , H2 , RH]) (fixHRT0 H1 H2 RH))

Rs x y

→ HRTFixRel H1 H2 RH Rs (SetFix.hin {k} {H1} {vecfst Rs} x)

(SetFix.hin {k} {H2} {vecsnd Rs} y)

The constructor rhin takes a vector of relations Rs, an element x of

Functor.F0 (Functor.F0 H1 (SetFix.fixH0 H1)) (vecfst Rs)

139

an element y of

Functor.F0 (Functor.F0 H2 (SetFix.fixH0 H2)) (vecsnd Rs)

and a proof that x and y are related. In particular, x and y must be related by

RTObj.F*Rel ((HEndo-obj (HRT[H1, H2, RH])) (fixHRT0 H1 H2 RH)) Rs

Let us break this type down into its components. The relation transformer (fixHRT0 H1 H2 RH) is the

fixpoint of RH, and

(HEndo-obj (HRT[H1, H2, RH])) : RTObj k→ RTObj k

is the action on objects of the endofunctor on RTCat k associated with the higher-order relation trans-

former HRT[H1, H2, RH]. Thus

(HEndo-obj (HRT[H1, H2, RH])) (fixHRT0 H1 H2 RH) : RTObj k

is the application of RH to its own fixpoint. The relation transformer above has an action on vectors of

relations:

RTObj.F*Rel ((HEndo-obj (HRT[H1, H2, RH])) (fixHRT0 H1 H2 RH))

and applying this action on relations to Rs gives a relation

RTObj.F*Rel ((HEndo-obj (HRT[H1, H2, RH])) (fixHRT0 H1 H2 RH)) Rs

with domain

Functor.F0 (Functor.F0 H1 (SetFix.fixH0 H1)) (vecfst Rs)

and codomain

Functor.F0 (Functor.F0 H2 (SetFix.fixH0 H2)) (vecsnd Rs)

If x and y are related by the above relation, then SetFix.hin x and SetFix.hin y are related by

HRTFixRel H1 H2 RH Rs

140

There is a lot going on with this data type, but it is easier to understand if we compare it to its

analogue HFixObj for sets. Recall the type of the constructor for HFixObj:

data HFixObj H where

hin : ∀ {As : Vec Set k}

→ Functor.F0 (Functor.F0 H (fixH0 H)) As

→ HFixObj H As

In non-Agda syntax, the type of the constructor hin can be read as: for every vector of sets A, if

x ∈ (H(µH))A, then hin x ∈ (µH)A. The constructor for HRTFixRel can be read similarly as: for every

vector of relations R : Rel(A,B), x ∈ (H1(µH1))A, y ∈ (H2(µH2))B, if (x, y) ∈ (RH(µRH))R, then

(hin x, hin y) ∈ (µRH)R.

To finish the definition of fixHRT0*, we still need to define fix-preserves for the F*Rel-preserves field

of fixHRT0*. This function is defined in the following where clause of fixHRT0*:

where fix-preserves : ∀ {Rs Ss : Vec RelObj k} (ms : Relsˆ k [Rs , Ss])

→ preservesRel (HRTFixRel H1 H2 RH Rs) (HRTFixRel H1 H2 RH Ss)

(Functor.1 (SetFix.fixH0 H1) (vecmfst ms))

(Functor.1 (SetFix.fixH0 H2) (vecmsnd ms))

fix-preserves ms (rhin p) = rhin (H*RTRel-preserves RH (fixHRT0 H1 H2 RH) ms p)

The function fix-preserves takes a morphism ms from Rs to Ss in Relsˆ k and produces a proof that the

actions of SetFix.fixH0 H1 and SetFix.fixH0 H2 on morphisms preserve related elements from

HRTFixRel H1 H2 RH Rs

to

HRTFixRel H1 H2 RH Ss

It is defined by pattern matching on a proof that two elements are related in HRTFixRel H1 H2 RH Rs,

for which the only possible constructor is rhin. The returned proof is also necessarily defined by the

rhin constructor. The type of p and the goal type for the argument of rhin on the right-hand side are

given in comments below:

141

where fix-preserves : ∀ {Rs Ss : Vec RelObj k} (ms : Relsˆ k [Rs , Ss])

→ preservesRel (HRTFixRel H1 H2 RH Rs) (HRTFixRel H1 H2 RH Ss)

(Functor.1 (SetFix.fixH0 H1) (vecmfst ms))

(Functor.1 (SetFix.fixH0 H2) (vecmsnd ms))

fix-preserves ms (rhin p) = rhin {!!}

-- Goal: H*RTRel RH (fixHRT0 H1 H2 RH) Ss

-- (Functor.F1 (Functor.F0 H1 (SetFix.fixH0 H1)) (vecmfst ms) x)

-- ((Functor.F1 (Functor.F0 H2 (SetFix.fixH0 H2)) (vecmsnd ms) y)

--

-- p : H*RTRel RH (fixHRT0 H1 H2 RH) Rs x y

We can prove the above goal by applying the H*RTRel-preserves field of the higher-order relation trans-

former RH to the relation transformer fixHRT0 H1 H2 RH, the morphism ms, and p. The fact that

fix-preserves relies on the definition of fixHRT0, which is defined in terms of fix-preserves, explains the

need for the TERMINATING flags above.

The action of fixHRT on morphisms is defined by:

{-# TERMINATING #-}

fixHRT1 : ∀ (H1 H2 : HFunc) (RH : HRTObj* H1 H2)

→ (K1 K2 : HFunc) (RK : HRTObj* K1 K2)

→ HRTMorph HRT[H1 , H2 , RH] HRT[K1 , K2 , RK]

→ RTMorph (fixHRT0 H1 H2 RH) (fixHRT0 K1 K2 RK)

fixHRT1 H1 H2 RH K1 K2 RK σ@(HRTM[σ1 , σ2 , σ-preserves]) =

RTM[SetFix.fixH1 H1 K1 σ1

, SetFix.fixH1 H2 K2 σ2

, (λ {Rs} → fixHRT1-preserves H1 H2 RH K1 K2 RK σ Rs)]

The function fixHRT1 takes a morphism of higher-order relation transformers from HRT[H1, H2, ,RH]

to HRT[K1, K2, ,RK] and returns a morphism of relation transformers between their fixpoints. The

d1 and d2 fields of the returned morphism are defined by applying the action of

fixH : Functor [[[Setsˆ k ,Sets] , [Setsˆ k ,Sets]]] [Setsˆ k ,Sets]

142

on morphisms componentwise to σ1 and σ2, giving two natural transformations in [Setsˆ k ,Sets]. The

proof that these natural transformations preserve related elements is given by:

fixHRT1-preserves : ∀ (H1 H2 : HFunc) (RH : HRTObj* H1 H2)

→ (K1 K2 : HFunc) (RK : HRTObj* K1 K2)

→ (σ : HRTMorph HRT[H1 , H2 , RH] HRT[K1 , K2 , RK])

→ (Rs : Vec RelObj k)

→ RTMorph-preserves (fixHRT0 H1 H2 RH) (fixHRT0 K1 K2 RK)

(SetFix.fixH1 H1 K1 (HRTMorph.σ1 σ))

(SetFix.fixH1 H2 K2 (HRTMorph.σ2 σ)) Rs

Here, RTMorph-preserves expands to the type of the d-preserves field for morphisms of relation trans-

formers. We use this function to make the type of fixHRT1-preserves more concise. It is defined by:

RTMorph-preserves : ∀ {k : N} (H K : RTObj k)

→ (d1 : NaturalTransformation (RTObj.F1 H) (RTObj.F1 K))

→ (d2 : NaturalTransformation (RTObj.F2 H) (RTObj.F2 K))

→ (Rs : Vec RelObj k) → Set

RTMorph-preserves H K d1 d2 Rs =

preservesRelObj (Functor.F0 (RTObj.F* H) Rs)

(Functor.F0 (RTObj.F* K) Rs)

(NaturalTransformation.η d1 (vecfst Rs))

(NaturalTransformation.η d2 (vecsnd Rs))

We elide the full definition of fixHRT1-preserves because it is somewhat long and technical, but it is

defined by pattern matching:

fixHRT1-preserves H1 H2 RH K1 K2 RK σ Rs (rhin p) = rhin {! !}

Here p, has the type H*RTRel RH (fixHRT0 H1 H2 RH) Rs x y.

143

With these definitions in hand, we can complete the definition of fixHRT:

fixHRT : ∀ {k} → Functor (HRTCat k) (RTCat k)

fixHRT =

record

{ F0 = λ { HRT[H1 , H2 , RH] → fixHRT0 H1 H2 RH }

; F1 = λ { {HRT[H1 , H2 , RH]} {HRT[K1 , K2 , RK]} σ → fixHRT1 H1 H2 RH K1 K2 RK σ }

; identity = λ { {HRT[H1 , H2 ,]} → SetFix.fixH1-identity H1 , SetFix.fixH1-identity H2 }

; homomorphism = λ { {HRT[H1 , H2 ,]} {HRT[K1 , K2 ,]} {HRT[J1 , J2 ,]} {f} {g}

→ SetFix.fixH1-homomorphism H1 K1 J1 (HRTMorph.σ1 f) (HRTMorph.σ1 g)

, SetFix.fixH1-homomorphism H2 K2 J2 (HRTMorph.σ2 f) (HRTMorph.σ2 g) }

; F-resp-≈ = λ { {HRT[H1 , H2 ,]} {HRT[K1 , K2 ,]} {f} {g} (f1≈g1 , f2≈g2)

→ (SetFix.fixH1-F-resp H1 K1 (HRTMorph.σ1 f) (HRTMorph.σ1 g) f1≈g1)

, (SetFix.fixH1-F-resp H2 K2 (HRTMorph.σ2 f) (HRTMorph.σ2 g) f2≈g2) }

}

The identity, homomorphism, and F-resp-≈ fields of fixHRT are defined componentwise by the corre-

sponding fields of its analogue fixH for sets.

144

Chapter 8

Parametricity

In this section we discuss parametricity for the calculus N and partially formalize some of the theorems

required to prove our semantics is parametric.

Parametricity is a property expressing that a polymorphic function of type ∀α→ Fα should behave

the same way no matter the type we choose for α. For example, the polymorphic identity function in

Agda

id : ∀ {A : Set} → A → A

id x = x

has the same behavior regardless of the type of its input. A more complex example is the function map

map : ∀ {A B : Set} → (A → B) → List A → List B

map f nil = nil

map f (cons x xs) = cons (f x) (map f xs)

that applies a function to every element in a list. The behavior of map is the same no matter how we

instantiate the types A and B when applying map to a list. Parametric polymorphism is a very useful

property of programming languages. For example, it can be used to define a program that safely uses

a type independently of the type’s implementation details, so the implementation can change without

breaking the program.

Parametricity is formalized in terms of relations. It was first introduced by Reynolds for the poly-

morphic lambda calculus [9]. Types are given both a set semantics and a relation semantics, and for

145

a semantics to be parametric, the interpretation of each term must send related inputs to related out-

puts. That is, the interpretation of a term of type f : A→ B must send a pair of inputs related by the

relational interpretation of the type A to a pair of outputs related by the relational interpretation of

the type B. Parametricity has many interesting consequences, including so called “theorems for free”

[10], which give a way to deduce properties of polymorphic programs solely from their types.

8.1 Parametricity for the Calculus N

The key theorems used to prove a semantics is parametric are the Identity Extension Lemma and the

Abstraction Theorem. The Identity Extension Lemma expresses that the relational intepretation of

a type in an equality environment is equal to equality relation on the set interpretation of that type.

The Identity Extension Lemma follows from the fact that if we interpret all type variables as equality

relations, then these equality relations are preserved by the relational interpretations of types. The

Identity Extension Lemma for the calculus N is given formally by:

Theorem 8.1.1. If ρ : SetEnv and Γ; Φ ` F then JΓ; Φ ` F KRelEqρ = EqJΓ;Φ`F KSetρ.

The Abstraction Theorem expresses that for every term t, the set interpretations of t in related

environments are related in the relational interpretation of t’s type. The Abstraction Theorem for

the calculus N follows from the fact that terms are interpreted as natural transformations and from

the extra relation-preserving condition given in the set interpretation of Nat types. The Abstraction

Theorem for N is given formally by:

Theorem 8.1.2. If Γ; Φ |∆ ` t : F and ρ ∈ RelEnv, and if (a, b) ∈ JΓ; Φ ` ∆KRelρ, then

(JΓ; Φ |∆ ` t : F KSet(π1ρ) a , JΓ; Φ |∆ ` t : F KSet(π2ρ) b) ∈ JΓ; Φ ` F KRelρ

Although it is not always explicitly stated as a requirement for parametricity, we must also prove

that the relation semantics of types is over the set semantics of types. That is, for every Γ; Φ ` F and

relation environment ρ, we must have

π1(JΓ; Φ ` F KRelρ) = JΓ; Φ ` F KSetπ1ρ

and

π2(JΓ; Φ ` F KRelρ) = JΓ; Φ ` F KSetπ2ρ

146

In the next section we formalize these notions by giving their statements in Agda. Since we have

not finished defining the term semantics, we do not prove the Abstraction Theorem. We partially prove

the Identity Extension Lemma, but the case for µ-types in particular is highly nontrivial, and we have

not yet determined how to adapt the corresponding proof in [5] for the Agda formalization.

8.2 Parametricity for the Calculus N in Agda

The first step to formalizing parametricity for the calculus N in Agda is to add the relation-preserving

condition to the set interpretation of Nat types. To do this we add a new field to the record type

defining the set interpretation of Nat types:

record NatTypeSem {k : N} {Γ : TCCtx} {F G : TypeExpr}

(αs : Vec (FVar 0) k) (ρ : SetEnv)

(`F : Γ o (∅ ,++ αs) ` F) (`G : Γ o (∅ ,++ αs) ` G) : Set where

constructor NatT[,]

field

nat : NaturalTransformation (extendSetSem-αs αs ρ (SetSem `F))

(extendSetSem-αs αs ρ (SetSem `G))

preserves-relations :

∀ (Rs : Vec RelObj k)

→ preservesRelObj-prop-eq

(Functor.F0 (RelSem `F) (Functor.F0 (extendRelEnv-αs αs (Functor.F0 EqEnv ρ)) Rs))

(Functor.F0 (RelSem `G) (Functor.F0 (extendRelEnv-αs αs (Functor.F0 EqEnv ρ)) Rs))

(nat-help1 αs (Functor.F0 EqEnv ρ) `F Rs)

(nat-help2 αs (Functor.F0 EqEnv ρ) `F Rs)

(nat-help1 αs (Functor.F0 EqEnv ρ) `G Rs)

(nat-help2 αs (Functor.F0 EqEnv ρ) `G Rs)

(NaturalTransformation.η nat (vecfst Rs))

(NaturalTransformation.η nat (vecsnd Rs))

This preserves-relations field corresponds to the condition imposed on natural transformations in the

set interpretation of Nat types in Definition 4.3.1. As we discussed in Section 7.4.1 when defining

147

the relational interpretation of Nat types, the components of the natural transformation nat here do

not have the right types to comprise a morphism between these relations. That is, the types of the

components are not definitionally equal to the types of the domains and codomains of the relations.

However, we can prove they are propositionally equal using the proofs given by the functions nat-help-1

and nat-help-2 introduced in Section 7.4.1. Using these proofs of equality, we can give the type of this

field in terms of preservesRelObj-prop-eq. To prove the Abstraction Theorem, it is necessary to show

that the set interpretations of terms of Nat type (e.g., map) satisfy this relation-preserving condition,

but we leave this for future work since we have not yet formalized the semantics of these terms.

The next step in formalizing parametricity for the calculus N in Agda is to prove that the relational

interpretations of types are over their set interpretations. This is proved by two separate functions:

SetSem-over-1 : ∀ {Γ} {Φ} {F} → (`F : Γ o Φ ` F) → ∀ (ρ : RelEnv)

→ Functor.F0 (SetSem `F) (Functor.F0 π1Env ρ)

≡ fst (Functor.F0 (RelSem `F) ρ)

SetSem-over-2 : ∀ {Γ} {Φ} {F} → (`F : Γ o Φ ` F) → ∀ (ρ : RelEnv)

→ Functor.F0 (SetSem `F) (Functor.F0 π2Env ρ)

≡ snd (Functor.F0 (RelSem `F) ρ)

We also have analogous functions for the interpretations of vectors of types:

SetSemVec-over-1 : ∀ {k} {Γ} {Φ} {Fs : Vec TypeExpr k} → (`Fs : foreach (Γ o Φ `) Fs)

→ ∀ (ρ : RelEnv)

→ Functor.F0 (SetSemVec `Fs) (Functor.F0 π1Env ρ)

≡ vecfst (Functor.F0 (RelSemVec `Fs) ρ)

SetSemVec-over-2 : ∀ {k} {Γ} {Φ} {Fs : Vec TypeExpr k} → (`Fs : foreach (Γ o Φ `) Fs)

→ ∀ (ρ : RelEnv)

→ Functor.F0 (SetSemVec `Fs) (Functor.F0 π2Env ρ)

≡ vecsnd (Functor.F0 (RelSemVec `Fs) ρ)

Below we only present the proof for SetSem-over-1 because the proof for SetSem-over-2 has exactly the

same structure. The proof for SetSemVec-over-1 (resp., SetSemVec-over-2) is given by pattern matching

on the input vector and applying SetSem-over-1 (resp., SetSem-over-2) to each type in the vector. The

proof for SetSem-over-1 is given by:

148

SetSem-over-1 0-I ρ = ≡.refl

SetSem-over-1 1-I ρ = ≡.refl

SetSem-over-1 (AppT-I {ϕ = ϕ} Γ3ϕ Fs `Fs) ρ =

≡.cong (Functor.F0 (RTObj.F1 (RelEnv.tc ρ ϕ))) (SetSemVec-over-1 `Fs ρ)

SetSem-over-1 (AppF-I {ϕ = ϕ} Φ3ϕ Fs `Fs) ρ =

≡.cong (Functor.F0 (RTObj.F1 (RelEnv.fv ρ ϕ))) (SetSemVec-over-1 `Fs ρ)

SetSem-over-1 (+-I `F `G) ρ = ≡.cong2] (SetSem-over-1 `F ρ) (SetSem-over-1 `G ρ)

SetSem-over-1 (×-I `F `G) ρ = ≡.cong2 ×’ (SetSem-over-1 `F ρ) (SetSem-over-1 `G ρ)

SetSem-over-1 (Nat-I `F `G) ρ = ≡.refl

SetSem-over-1 (µ-I `F Gs `Gs) ρ rewrite (SetSemVec-over-1 `Gs ρ) = ≡.refl

Because of the way we set up the relational semantics of types, the proof of SetSem-over-1 is relatively

straightforward. The 0-I and 1-I cases are trivial because the first component of Rel⊥ (resp., Rel>) is

⊥ (resp., >) by definition.

For the AppT-I case, we must prove:

-- Goal: Functor.F0 (RTObj.F1 (SetEnv.tc ρ ϕ))

-- (Functor.F0 (SetSemVec `Fs) (Functor.F0 π1Env ρ))

-- ≡

-- Functor.F0 (RTObj.F1 (SetEnv.tc ρ ϕ))

-- (vecfst (Functor.F0 (RelSemVec `Fs) ρ))

That is, we must prove that the results of applying the same function to different arguments are equal

when the arguments are equal. We prove this using ≡.cong and SetSemVec-over-1. The case for AppF-I

has the same structure.

For the sum case, we must prove:

-- Goal: (Functor.F0 (SetSem `F) (Functor.F0 π1Env ρ)

--]

-- Functor.F0 (SetSem `G) (Functor.F0 π1Env ρ)

-- ≡

-- (fst (Functor.F0 (RelSem `F) ρ)

--]

-- fst (Functor.F0 (RelSem `G) ρ))

149

That is, we must prove that the two sums are equal when their summands are equal. We prove this

using ≡.cong2 and the proofs of SetSem-over-1 for the summands. The case for products has the same

structure.

For the Nat-I case, the proof is trivial. The goal we must prove is:

-- Goal: NatTypeSem αs (NatEnv (Functor.F0 π1Env ρ)) `F `G

-- ≡ fst (NatTypeRelObj αs (RelEnvironments.NatEnv ρ) `F `G)

This goal reduces to:

-- Goal: NatTypeSem αs

-- SetEnv[(λ ϕ → RTObj.F1 (SetEnv.tc ρ ϕ)) , (λ → ConstF >)] `F `G

-- ≡

-- NatTypeSem αs

-- SetEnv[(λ ϕ → RTObj.F1 (SetEnv.tc ρ ϕ)) , (λ → ConstF >)] `F `G

The left-hand side and right-hand side reduce to the same type because NatEnv (Functor.F0 π1Env ρ)

and Functor.F0 π1Env (RelEnvironments.NatEnv ρ)1 are equivalent. Here RelEnvironments.NatEnv maps

every functorial variable to the constant Rel> relation transformer, whose set functor components are

given by ConstF>.

The µ-I case has the same structure as the AppT-I and AppF-I cases. The goal we must prove is:

-- Goal: Functor.F0 (MuSem `F (SetSemVec `Gs)) (Functor.F0 π1Env ρ)

-- ≡ fst (Functor.F0 (MuRelSem `F (RelSemVec `Gs)) ρ)

This goal reduces to:

-- Goal: (HFixObj ...) (Functor.F0 (SetSemVec `Gs) (Functor.F0 π1Env ρ))

-- ≡ (HFixObj ...) (vecfst (Functor.F0 (RelSemVec `Gs) ρ))

Here, the two occurrences of HFixObj ... are equal because of the way we defined fixpoints of relation

transformers to be over the fixpoints of their set components. We elide the argument to HFixObj because

it is a somewhat long type. Again, we have the same function applied to two different arguments, and

we know the arguments are equal. We could prove this using ≡.cong as we did for AppT-I and AppF-I

1This occurence of π1Env comes from the definition of NatTypeRelObj.

150

above, but instead we opt to use Agda’s rewrite construct. The rewrite construct takes a proof of equality

of the form lhs ≡ rhs and tells Agda to update any goals by replacing lhs with rhs in each goal. Using

rewrite is more convenient than ≡.cong in this case because it means we can avoid writing out the type

represented by HFixObj It also happens to type-check faster than a version using ≡.cong. After

invoking rewrite, the goal becomes:

-- Goal: (HFixObj ...) (Functor.F0 (SetSemVec `Gs) (Functor.F0 π1Env ρ))

-- ≡ (HFixObj ...) (Functor.F0 (SetSemVec `Gs) (Functor.F0 π1Env ρ))

Now the left-hand side and right-hand side of the equality we would like to prove are identical, so we

can prove it using ≡.refl.

The proof for SetSem-over-2 is identical to the one we just presented for SetSem-over-1. The only

difference is that the goal types involve snd and π2Env rather than fst and π1Env.

The statement of the Identity Extension Lemma is given in Agda as:

IEL : ∀ {k : N} {Γ} {Φ} {F} (ρ : SetEnv)

→ (`F : Γ o Φ ` F)

→ Functor.F0 (RelSem `F) (Functor.F0 EqEnv ρ)

≡ Functor.F0 Eq (Functor.F0 (SetSem `F) ρ)

In order to prove these relations are equal, we must give proofs of equality for their domains, their

codomains, and their underlying relations. We can give the proofs that their domains and their

codomains are equal in terms of SetSem-over-1 and SetSem-over-2. The difficult part is in proving

that the relations themselves are equal. In particular, we must prove that if two elements x and y are

related by the relational interpretation of a type with respect to an equality environment, then x and y

must be equal. That is, we would like to prove something along the lines of:

IEL-eq : ∀ {Γ} {Φ} {F} (ρ : SetEnv)

→ (`F : Γ o Φ ` F)

→ ∀ {x y}

→ x , y ∈ rel (Functor.F0 (RelSem `F) (Functor.F0 EqEnv ρ))

→ x ≡ y

151

But the equality type in the last line above does not type-check, because the type of x

fst (Functor.F0 (RelSem`F) (Functor.F0 EqEnv ρ))

and the type of y

snd (Functor.F0 (RelSem`F) (Functor.F0 EqEnv ρ))

are not definitionally equal. To make this equality type-check, we can use the heterogeneous equality

type. Heterogeneous equality is defined in Agda’s standard library by:

data ∼= {a b : Level} {A : Set a} (x : A) : {B : Set b} → B → Set a where

refl : x ∼= x

Heterogeneous equality allows us to compare two elements of different types for equality, but like the

type of propositional equality, it only has a constructor for x ∼= x. Using heterogeneous equality, we

can express the type of IEL-eq as:

IEL-eq : ∀ {Γ} {Φ} {F} (ρ : SetEnv)

→ (`F : Γ o Φ ` F)

→ ∀ {x y}

→ x , y ∈ rel (Functor.F0 (RelSem `F) (Functor.F0 EqEnv ρ))

→ x ∼= y

We can prove the cases of IEL-eq for 0-I and 1-I trivially because their interpretations always yield

the same relation (or set, for the set semantics). We can prove the cases for sums and products by

straightforward induction. The remaining cases are nontrivial and have not yet been proved in Agda.

To state the Abstraction Theorem in Agda, we must first define a relational interpretation of term

contexts. We define this analogously to the set interpretation of term contexts as the product of the

functors interpreting the individual types in the term context:

ContextInterpRel : ∀ {Γ : TCCtx} {Φ : FunCtx} → TermCtx Γ Φ

→ Functor RelEnvCat Rels

ContextInterpRel ∆∅ = ConstF Rel>

ContextInterpRel (∆ ,- : `F 〈 〉) = ContextInterpRel ∆ ×Rels RelSem `F

152

Like the type of IEL-eq above, the type of the Abstraction Theorem also requires some reasoning

about equality to make things type-check. We might try to state the Abstraction Theorem as:

AbstractionThm : ∀ {Γ : TCCtx} {Φ : FunCtx} {∆ : TermCtx Γ Φ}

→ {F : TypeExpr} → {`F : Γ o Φ ` F}

→ {t : TermExpr}

→ (`t : Γ o Φ | ∆ ` t : `F)

→ (ρ : RelEnv)

→ ∀ {a : Functor.F0 (ContextInterp ∆) (Functor.F0 π1Env ρ)}

{b : Functor.F0 (ContextInterp ∆) (Functor.F0 π2Env ρ)}

→ a , b ∈ rel (Functor.F0 (ContextInterpRel ∆) ρ)

→ NaturalTransformation.η (TermSetSem `t) (Functor.F0 π1Env ρ) a

, NaturalTransformation.η (TermSetSem `t) (Functor.F0 π2Env ρ) b

∈ rel (Functor.F0 (RelSem `F) ρ)

There are two issues with this type. First, for a and b to be given as arguments to the components of the

natural transformations in this type, they must have the types they are given above. But the types of a

and b are not definitionally equal to the domain and codomain of (Functor.F0 (ContextInterpRel ∆) ρ), so

the last argument before the return type does not type-check. Second, the types of the terms related in

the return type are not definitionally equal to the domain and codomain of (Functor.F0 (RelSem`F) ρ).

To resolve these issues, we introduce the function:

, ∈[][] : ∀ {A B C D : Set} → C → D → (A ≡ C) → (B ≡ D) → REL A B → Set

x , y ∈[≡.refl][≡.refl] R = x , y ∈ R

This function expresses that two terms x and y are related by R when the type of x is propositionally

equal to the domain of R and the type of y is propositionally equal to the codomain of R. Using this

function, we can give a well-typed statement of the Abstraction Theorem as:

AbstractionThm : ∀ {Γ : TCCtx} {Φ : FunCtx} {∆ : TermCtx Γ Φ}

→ {F : TypeExpr} → {`F : Γ o Φ ` F}

→ {t : TermExpr}

→ (`t : Γ o Φ | ∆ ` t : `F)

→ (ρ : RelEnv)

153

→ ∀ {a : Functor.F0 (ContextInterp ∆) (Functor.F0 π1Env ρ)}

{b : Functor.F0 (ContextInterp ∆) (Functor.F0 π2Env ρ)}

→ a , b ∈[ContextInterp-over-1 ∆ ρ][ContextInterp-over-2 ∆ ρ]

rel (Functor.F0 (ContextInterpRel ∆) ρ)

→ NaturalTransformation.η (TermSetSem `t) (Functor.F0 π1Env ρ) a

, NaturalTransformation.η (TermSetSem `t) (Functor.F0 π2Env ρ) b

∈[≡.sym (SetSem-over-1 `F ρ)][≡.sym (SetSem-over-2 `F ρ)]

rel (Functor.F0 (RelSem `F) ρ)

The proofs of equality for the return type are given in terms of SetSem-over-1 and SetSem-over-2. We

must also use ≡.sym there to swap the order of the arguments to the equality type. The proofs of

equality for the last argument of AbstractionThm give that the the domain of

Functor.F0 (ContextInterpRel ∆) ρ

is equal to the type of a and that its codomain is equal to the type of b. These proofs are given by:

ContextInterp-over-1 : ∀ {Γ : TCCtx} {Φ : FunCtx} (∆ : TermCtx Γ Φ)

→ (ρ : RelEnv)

→ fst (Functor.F0 (ContextInterpRel ∆) ρ)

≡ Functor.F0 (ContextInterp ∆) (Functor.F0 π1Env ρ)

ContextInterp-over-2 : ∀ {Γ : TCCtx} {Φ : FunCtx} (∆ : TermCtx Γ Φ)

→ (ρ : RelEnv)

→ snd (Functor.F0 (ContextInterpRel ∆) ρ)

≡ Functor.F0 (ContextInterp ∆) (Functor.F0 π2Env ρ)

The definition of ContextInterp-over-1 (resp., ContextInterp-over-2) is given by pattern matching on its

input term context and using SetSem-over-1 (resp., SetSem-over-2) on each type in that term context.

154

Chapter 9

Conclusion

In this thesis, we formalized the syntax of the calculus N and partially formalized its semantics. Our

formalization closely corresponds to the development in [5], but it deviates from the definitions given

there in a few places. For example, our definition of the semantics of types corresponds exactly to

the semantics of types presented in [5] except in the intepretation of µ-types. There, the fixpoint of a

functor is defined in terms of a categorical construct called a colimit. To express fixpoints of functors

in our formalization, we use an explicit construction based on an inductive data type in Agda. Another

place our formalization deviates from [5] is in the interpretation of Nat types. In Agda, we have an

extra step to explicitly “forget” the functorial variables in an environment (by sending them all to a

constant functor on the singleton set) before using the environment to interpret Nat types. This extra

step makes it easier to show that the interpretation of Nat types is a functor.

We have seen that Agda is very useful for doing bookkeeping tasks such as keeping track of proof

goals and verifying proofs for correctness. But, by design, Agda is very pedantic, and many issues

that can be elided on paper require tedious extra steps in Agda because every detail must be explicitly

formalized. This extreme attention to detail can be both a useful tool and a drawback. For example,

when we formalized the syntax of types, we identified (with the help of Agda) a subtle error in the

syntax of µ-types that actually resulted in a change in [5]. On the other hand, there are several places

throughout the formalization where we have proofs of propositional equality for two types, but we have

to go through extra proof steps because the types are not definitionally equal. These extra steps are

not required outside of Agda, because if we prove an equality of two objects on paper then we can just

use the equal objects interchangeably.

155

9.1 Future Work

There are several possible directions for extending and improving the formalization presented in this

thesis.

The most obvious direction for future work is to refactor the syntax of types to address the issues

described at the end of Section 6.1.1. This would allow us to finish defining the set semantics of terms.

In particular, we need to be able to express the fact that type contexts have at most one occurrence

of each variable. This should allow us to prove that (syntactic) substitution of multiple variables

interacts correctly with (semantic) environment extension of multiple variables. Another solution to

this substitution issue could be to keep track of the variables that are actually used in a type, since

variables that appear in a type’s context are not necessarily used in that type. For example, the type 1

can be formed in a context with any variables, but these variables have no effect on the interpretation

of the type 1. If we keep track of the variables actually used in each type, it might be easier to show

that substitution and environment extension have the desired interaction.

With a complete definition of the term semantics, we could attempt to verify that the set interpre-

tation of a term in N is equivalent (extensionally equal) to the corresponding Agda term. For example,

we could attempt to verify that the interpretation of the map term for lists is equivalent to the map

function for the list type in Agda.

Another direction for future work is to finish proving the Identity Extension Lemma and to prove

the Abstraction Theorem. Also, if we prove both of these then we should be able to derive some free

theorems for the types of N .

To make the proofs of the Identity Extension Lemma and Abstraction Theorem more straightfor-

ward, we could potentially refactor the relation semantics of types so that it is over the set semantics of

types by definition. If we did this, then we could state the Identity Extension Lemma without having to

resort to heterogeneous equality. It would also eliminate the need for the propositional equality proofs

in the statement of the Abstraction Theorem and in the set and relational semantics of Nat types.

If we were to finish defining the set semantics of terms, the Identity Extension Lemma, and the

Abstraction Theorem, there are several possible directions for extending the calculus and model. For

example, we could add more expressive recursion combinators to the term syntax, since the fold construct

only captures a specific form of recursion, as discussed in [5]. Another possibility would be to generalize

the semantics to interpret types in other categories, as many of the constructions in our formalization

156

can be defined for categories with sufficiently Sets-like structure. We could also extend the type system

of N to include richer classes of data types beyond nested types.

157

Bibliography

[1] Awodey, S. Category Theory, 2nd ed. Oxford University Press, Inc., USA, 2010.

[2] de Bruijn, N. Lambda calculus notation with nameless dummies, a tool for automatic formula

manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae 75, 5

(1972), 381–392.

[3] Hu, J. Z. S., and Carette, J. Proof-relevant category theory in Agda. CoRR abs/2005.07059

(2020).

[4] Jeffries, D. Agda code for this thesis. https://github.com/jeffriesd/P4NT.

[5] Johann, P., Ghiorzi, E., and Jeffries, D. Parametricity for primitive nested types. In

Foundations of Software Science and Computation Structures (2021), pp. 324–343.

[6] Johann, P., and Polonsky, A. Higher-kinded data types: Syntax and semantics. In Logic in

Computer Science (2019), pp. 1–13.

[7] Norell, U. The Agda user manual. https://agda.readthedocs.io.

[8] Norell, U. Dependently typed programming in Agda. In Proceedings of the 6th International

Conference on Advanced Functional Programming (2008), p. 230–266.

[9] Reynolds, J. C. Types, abstraction, and parametric polymorphism. Information Processing

83(1) (1983), 513–523.

[10] Wadler, P. Theorems for free! In Functional Programming Languages and Computer Architecture

(1989), pp. 347–359.

158

Vita

Daniel Jeffries was born in Stokesdale, North Carolina, to John and Valerie Jeffries.

He graduated from Dalton L. McMichael High School in June 2015. In the fall of 2017, he

enrolled at Appalachian State University to study Computer Science, and in December 2019

he was awarded the Bachelor of Science degree. In Spring of 2020, he accepted a research

assistantship in Computer Science at Appalachian State University and began study toward a

Master of Science degree.

159

	Abstract
	Acknowledgements
	=Introduction
	Proof Assistants
	What is a proof assistant?
	Why use a proof assistant?

	Agda and Dependent Types
	Dependent Types

	Propositions As Types
	Nested Types and The Calculus N

	=Syntax of Types
	Type Variables
	Type Expressions
	Type Contexts
	Type Formation Rules
	Weakening
	Substitution
	Second-order substitution

	=Category Theory
	Category Theory Crash Course
	Formal Definition
	Examples of Categories
	Functors
	Examples of Functors
	Natural Transformations

	Category Theory in Agda
	Categories
	Examples of Categories in Agda
	Functors
	Natural Transformations

	=Set Semantics of Types
	Set Environments
	Set Environments in Agda
	Interpreting Types as Sets
	Interpreting Types as Sets in Agda
	Fixpoints of Functors in Agda

	=Syntax of Terms
	Term Variables and Term Contexts
	Term Contexts in Agda

	Well-formed Terms
	Well-formed Terms in Agda

	=Set Semantics of Terms
	Set Semantics of Terms in Agda
	Interpreting the Remaining Terms

	=Relation Semantics of Types
	Relations and Relation Transformers
	Relation Transformers

	Relations and Relation Transformers in Agda
	Relation Transformers in Agda
	Functors of Relation Transformers

	Relation Environments
	Relation Environments in Agda

	Interpreting Types as Relations
	Interpreting Types as Relations in Agda
	Fixpoints of Relation Transformers in Agda

	=Parametricity
	Parametricity for the Calculus N
	Parametricity for the Calculus N in Agda

	=Conclusion
	Future Work

	Bibliography
	Vita

